Package 'ccImpute'

May 17, 2024

Type Package

Title ccImpute: an accurate and scalable consensus clustering based approach to impute dropout events in the single-cell RNA-seq data (https://doi.org/10.1186/s12859-022-04814-8)

Version 1.6.0

Description Dropout events make the lowly expressed genes indistinguishable from true zero expression and different than the low expression present in cells of the same type. This issue makes any subsequent downstream analysis difficult. ccImpute is an imputation algorithm that uses cell similarity established by consensus clustering to impute the most probable dropout events in the scRNA-seq datasets. ccImpute demonstrated performance which exceeds the performance of existing imputation approaches while introducing the least amount of new noise as measured by clustering performance characteristics on datasets with known cell identities.

License GPL-3

Imports Rcpp, matrixStats, stats, SIMLR, BiocParallel

LinkingTo Rcpp, RcppEigen

Encoding UTF-8

LazyData FALSE

BugReports https://github.com/khazum/ccImpute/issues

RoxygenNote 7.2.1

biocViews SingleCell, PrincipalComponent, DimensionReduction, Clustering, RNASeq, Transcriptomics

biocType Software

Suggests knitr, rmarkdown, BiocStyle, sessioninfo, scRNAseq, scater, SingleCellExperiment, mclust, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/ccImpute

git_branch RELEASE_3_19

ccImpute

git_last_commit ce4e4c1
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-17
Author Marcin Malec [cre, aut] (<https://orcid.org/0000-0002-2354-513X>)
Maintainer Marcin Malec <mamalec@iu.edu>

Contents

•		•										•	•																
•		•	•	•	•			•		•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	
	· · · · · · · ·	· · · · · · · · · · · ·	· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·														

Index

ccImpute	Performs imputation of dropout values in scRNA-seq data using ccIm- pute algorithm as described in the ccImpute: an accurate and scal- able consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data DOI: https://doi.org/10.1186/s12859- 022-04814-8
	022-04014-0

Description

Performs imputation of dropout values in scRNA-seq data using ccImpute algorithm as described in the ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data DOI: https://doi.org/10.1186/s12859-022-04814-8

Usage

```
ccImpute(
    logX,
    useRanks = TRUE,
    pcaMin,
    pcaMax,
    k,
    consMin = 0.65,
    kmNStart,
    kmMax = 1000,
    BPPARAM = bpparam()
)
```

2

ccImpute

Arguments

logX	A normalized and log transformed scRNA-seq expression matrix.
useRanks	A Boolean specifying if non-parametric version of weighted Pearson correlation should be used. It's recommended to keep this as TRUE since this performs better as determined experimentally. However, FALSE will also provide decent results with the benefit or faster runtime.
pcaMin	This is used to establish the number of minimum PCA features used for gener- ating subsets. For small datasets up to 500 cells this equals pcaMin*n minimum features, where n is number of cells. For large datasets, this corresponds to the feature count that has proportion of variance less than pcaMin. Both pcaMin and pcaMax must be specified to be considered. It's best to keep this value as default unless a better value was obtained experimentally.
рсаМах	This is used to establish the number of maximum PCA features used for generat- ing subsets. For small datasets up to 500 cells this equals pcaMax*n maximum features, where n is number of cells. For large datasets, this corresponds to the feature count that has proportion of variance less than pcaMax. Both pcaMin and pcaMax must be specified to be considered. It's best to keep this value as default unless a better value was obtained experimentally.
k	centers parameter passed to kmeans function. This corresponds to a number of different cell groups in data. This can be estimated in a number of meth- ods. If not provided we take the approach provided in the SIMLR package. (https://www.bioconductor.org/packages/release/bioc/html/SIMLR.html)
consMin	the low-pass filter threshold for processing consensus matrix. This is to elimi- nate noise from unlikely clustering assignments. It is recommended to keep this value >5.
kmNStart	nstart parameter passed to kmeans. function. Can be set manually. By default it is 1000 for up to 2000 cells and 50 for more than 2000 cells.
kmMax	iter.max parameter passed to kmeans. ccImpute is a stochastic method, and setting the rand_seed allows reproducibility.
BPPARAM	- BiocParallel parameters for parallelization

Value

A normalized and log transformed scRNA-seq expression matrix with imputed missing values.

Examples

```
exp_matrix <- log(abs(matrix(rnorm(1000000),nrow=10000))+1)
ccImpute(exp_matrix, k = 2)</pre>
```

findDropouts

Establishes which zero values in x are dropout events based on weighted cell voting with weights derived from processed consensus matrix consMtx.

Description

Establishes which zero values in x are dropout events based on weighted cell voting with weights derived from processed consensus matrix consMtx.

Usage

findDropouts(x, consMtx)

Arguments

х	transpose of log normalized expression matrix
consMtx	processed consensus matrix

Value

list of indices in x that are dropout events

findNDim	Establish what subsets of loadings from PCA distance measure are
	used for for measuring cluster instability

Description

Establish what subsets of loadings from PCA distance measure are used for for measuring cluster instability

Usage

```
findNDim(n, distPCA, pcaMin, pcaMax)
```

Arguments

n	number of samples
distPCA	PCA reduced distance matrix
pcaMin	This is used to establish the number of minimum PCA features used for gener- ating subsets. For small datasets up to 500 cells this equals pcaMin*n minimum features, where n is number of cells. For large datasets, this corresponds to the feature count that has proportion of variance less than pcaMin. Both pcaMin and pcaMax must be specified to be considered.

getConsMtx

рсаМах	This is used to establish the number of maximum PCA features used for generat-
	ing subsets. For small datasets up to 500 cells this equals pcaMax*n maximum
	features, where n is number of cells. For large datasets, this corresponds to the
	feature count that has proportion of variance less than pcaMax. Both pcaMin and
	pcaMax must be specified to be considered.

Value

list of numbers with each number corresponding to the number of loadings to use for clustering.

getConsMtx	
------------	--

Computes consensus matrix given cluster labels

Description

Computes consensus matrix given cluster labels

Usage

getConsMtx(dat)

Arguments

dat

a matrix containing clustering solutions in columns

Value

consensus matrix

Description

This function gets consensus matrix based on the clustering solutions contained in the kmResults input parameter and does the processing to use it for imputation.

Usage

```
getPConsMtx(kmResults, consMin)
```

Arguments

kmResults	list of k-means clustering assignments on the PCA loadings sub-datasets.
consMin	the low-pass filter threshold value for processed consensus matrix.

Value

a processed consensus matrix.

solveDrops

kmAux

This function performs kmeans clustering of the subdataset corresponding to a given range i of PCA loadings as contained in input parameter.

Description

This function performs kmeans clustering of the subdataset corresponding to a given range i of PCA loadings as contained in input parameter.

Usage

kmAux(i, input, k, kmNStart, kmMax)

Arguments

i	number of loadings to use.
input	the matrix of all variable loadings.
k	centers (integer) parameter passed to kmeans function.
kmNStart	nstart parameter passed to kmeans function. Can be set manually. By default it is 1000 for up to 2000 cells and 50 for more than 2000 cells.
kmMax	iter.max parameter passed to kmeans function.
nCores	defines the number of cores to be used on the user's machine. If not set, 'ccIm- pute' will use all but one cores of your machine.
nDim	the list of containing a number of PCA loadings to use for each sub-dataset.
rand_seed	sets the seed of the random number generator. ccImpute is a stochastic method, and setting the rand_seed allows reproducibility.

Value

a list of clustering assignments for all the sub-datasets.

solveDrops Computes imputed express	ion matrix using linear eq solver.
-------------------------------------	------------------------------------

Description

Computes imputed expression matrix using linear eq solver.

Usage

solveDrops(cm, em, ids, n_cores)

wCorDist

Arguments

СМ	processed consensus matrix
em	expression matrix
ids	location of values determined to be dropout events
n_cores	number of cores to use for parallel computation.

Value

imputed expression matrix

wCorDist	Computes a weighted Pearson distance measure matrix. If ranks are
	used this measure turns into weighted Spearman distance measure ma-
	trix.

Description

Computes a weighted Pearson distance measure matrix. If ranks are used this measure turns into weighted Spearman distance measure matrix.

Usage

wCorDist(x, w, useRanks, n_cores)

Arguments

х	input with columns containing each observation
W	weights for all values in a obervation
useRanks	indicates if Pearson should be computed on weighted ranks.
n_cores	number of cores to use for parallel computation.

Value

weighted Pearson distance measure matrix. If ranks are used this measure turns into weighted Spearman distance measure matrix.

Index

* internal findDropouts, 4 findNDim, 4 getPConsMtx, 5 kmAux, 6 ccImpute, 2 findDropouts, 4 findNDim, 4 getConsMtx, 5 getPConsMtx, 5

kmAux, 6 kmeans, 3, 6

solveDrops, 6

wCorDist,7