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Profiling Tumor-Immune Ecosystem in Breast Cancer

● Immunotherapy treatments successful only in a subset of 
patients and cancer types

● Underlying biology determining success is not known

● Variability in responses suggest a complex immune 
environment

● Goal: Unsupervised characterization of tumor-infiltrating 
immune subpopulations across subtypes of breast cancer, 
identify impact of environmental cues 

● Understanding the tumor-immune ecosystem can guide 
development of treatments to activate immune cells 
against the tumor

● Pilot Data: Single-cell RNA-seq 9000 CD45+ immune 
cells from 4 tumors (patients)

*figure adapted from Kroemer Nat Med 2015
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Collaboration with Alexander Rudensky, MSKCC



Single-cell RNA-seq reveals heterogeneity in expression

PBMC single-cell data 
(Zheng et al. bioRXiv 2016)

Count matrix

Measurement of gene expression at resolution of single cells 

Allows characterizing novel cell types and 
functions based on heterogeneity

indrop (Klein et al Cell 2015)

Break
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Single-cell RNA-seq data for immune cells from 4 breast cancer tumors 

9000 CD45+ cells from 4 tumors
○ Normalization by library size

■ Unclear structure of cell types 
■ Large patient biases

MSK1
MSK2
MSK3
MSK4
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lymphoidc
ells

monocytic
cells

Problems of scRNA-seq data:
○ Sampling sparse amounts of mRNA 

leads to “Drop-outs”
○ Amplification differences
○ Cell-type specific capture rates
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Goal: Characterizing cell subpopulations using 
Single-cell RNA-seq data



2D projection of cells 
(TSNE)
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Observed Count Matrix
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Problems: Single-cell RNA-seq data involves significant dropouts 
and library size variation



To mean/median library size
Downsampling
BASiCS with spike-ins/ERCCs

Clustering Cells

Downstream 
Analysis
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G
en

es

  Problems:

● Dropouts not resolved
Zeros remain zero!

● Removes biological 
stochasticity specific to 
cell type

● Leads to improper 
clustering; Biased 
downstream analysis

Observed Count Matrix
Cells
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Common Approach:
Normalizing independent of cell types
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Main Concepts behind Biscuit
for Normalization and Imputing



2D projection of cells 
(TSNE)A

Problem #1: Imputing
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Two ideas for imputing expression in Single-cell RNA-seq data



But we observe cells 
with same type mostly 

have high expression of 
Gene A

A
No expression of 
Gene A in a cell

Problem #1: Imputing
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Idea 1: Impute dropouts based on cell type



Impute dropout in Gene 
A based on similar cells

But we observe cells 
with same type mostly 

have high expression of 
Gene A

No expression of 
Gene A in a cellA

Problem #1: Imputing
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Idea 1: Impute dropouts based on cell type



Problem #1: Imputing

No significant 
inference based on 

similar cells
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Idea 2: Impute dropouts based on co-expression patterns



Problem #1: Imputing

However Gene A always 
co-expressed with Gene B 

in cells of same type

No significant 
inference based on 

similar cells
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Idea 2: Impute dropouts based on co-expression patterns



Problem #1: Imputing

Impute dropout in Gene A
based on Gene B 

No significant 
inference based on 

similar cells

However Gene A always 
co-expressed with Gene B 

in cells of same type
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Idea 2: Impute dropouts based on co-expression patterns



   Problem #2: Normalization

Histogram of library size in 
example SC dataset

From Zeisel, Science 2014

In addition to imputing dropouts, 
we need to normalize data by library size 15

Normalization of Single-cell RNA-seq data 



Example Housekeeping Gene

Cells with different sizes have 
very different total number of 

transcripts

High chance of Dropouts in 
smaller cells

   Problem #2: Normalization

0
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Problem with Global Normalization



Dropout not resolved

Spurious Differential 
Expression

0 0

   Problem #2: Normalization
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Problem with Global Normalization



Chicken and egg problem: 
Normalize based on cell types but we 

do not know cell types!

   Problem #2: Normalization
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Key: Different normalization for each cell type



iterative 
learning

Imputing &
Normalization

Clustering 
Cells

x 3

x 1

x 0.75 x 1 19

Approach: 
Simultaneous inference of clusters and imputing parameters
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Cell-specific 
Parameters

 for Imputing & 
Normalization

Assignment of 
cells to 
clusters

Parameters 
characterizing 
each cluster

x 3

x 1

x 0.75 x 1

iterative 
learning

Approach: 
Simultaneous inference of clusters and imputing parameters
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Modeling Single-cell data using 
a Bayesian Mixture Model  
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Ideal Count Matrix 
(normalized)

Cells

G
en

es

Cluster 1 Cluster 2 Cluster 3

Modeling Clusters of Cells using a Bayesian Mixture Model 



Cluster 1 Cluster 2 Cluster 3

Each gene: 
Mixture of Log-Normal Models
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Ideal Count Matrix 
(normalized)

Cells

G
en

es

Cluster 1 Cluster 2 Cluster 3

One 
gene

Modeling Clusters of Cells using a Bayesian Mixture Model 



Modeling Clusters of Cells using a Bayesian Mixture Model 
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Ideal Count Matrix 
(normalized)

Cells

G
en

es

Cluster 1 Cluster 2 Cluster 3

Cluster 1

Cluster 2 Cluster 3

Modeling all genes together: 
Mixture of Multivariate Log-Normals

To also take advantage of co-expression patterns 
in learning clusters

Two 
genes
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Generative Model 
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Generative Model with Technical Variation  
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Latent counts which we 

want to recover

Observation



Cluster-specific 
parameters

Cell-specific 
parameters

Priors set based on 
observed lib size 
distribution

Hyper-parameters

Hyper-priors

Global Distributions of 
Observed Data

Observed gene 
expression per cell jPrabhakaran*, Azizi* ICML 2016 27

BISCUIT (Bayesian Inference for Single-cell ClUstering and ImpuTing)

Data-driven priors to adapt to different datasets



Model Specification

28Prabhakaran*, Azizi* ICML 2016



Inference Algorithm
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Parallel Sampling from derived conditional posterior distributions: 
P(parameter| data, other parameters)

Sampling technical 
variation 

parameters

Sampling 
assignment of 

cells to clusters 
using Chinese 

Restaurant 
Process (CRP)

Sampling 
cluster-specific 

parameters

Sample 
hyper-parameters

Gibbs
iterations

scaling mean, cov 
per cell

Also allows 
estimating the 

number of clusters

Estimate 
hyper-priors 

based on Data

Prabhakaran*, Azizi* ICML 2016



Performance on Simulated Data
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Data simulated from model for 100 cells, 50 genes in 3 clusters
Confusion matrices showing true labels and those from MCMC-based methods

Boxplots of F-scores obtained in 15 experiments with randomly-generated data

Prabhakaran*, Azizi* ICML 2016



Model Mismatch: 
Robustness when counts are not LogNormal
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Noncentral Student’s t (Log) Negative binomial 

Prabhakaran*, Azizi* ICML 2016



Performance on Single-cell Data Zeisel et al., 2015

● 3005 mouse cortex cells, with UMIs
● Deep coverage gives good ground truth for 7 Cell types 
● Selected 558 genes with largest standard deviation across cells

● Fit model to log(counts+1) F-score: 0.91

32Prabhakaran*, Azizi* ICML 2016



F-score: 0.91 F-score: 0.79

F-score: 0.74 F-score: 0.61
DBscan

F-score: 0.21
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Comparison to other methods
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BISCUIT clusters & parameters

Impute & Normalize
With a linear transformation
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Cluster-dependent Imputing & Normalizing 

I
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Data

BISCUIT clusters & parameters
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Cluster-dependent Imputing & Normalizing 
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Characterizing tumor-infiltrating immune cells
in breast cancer 



Unclear structure of cell types 
Large patient biases

MSK1
MSK2
MSK3
MSK4

Unclear structure of cell types 
Large patient biases 37

Single-cell RNA-seq data for immune cells from 4 breast cancer tumors 



MSK1
MSK2
MSK3
MSK4

Defined Structure
Corrected patient biases

Unclear structure of cell types 
Large patient biases 38

Single-cell RNA-seq data for immune cells from 4 breast cancer tumors 
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Impact of environment in immune cell heterogeneity

● Little known about how tissue microenvironment modulates anti-tumor immunity

● Collected 50K CD45+ leukocytes from 8 patients
○ Different ranges of tumor grade, ER, PR, Her2, age, two cases of metastases
○ Different environments (tissues): 

■ Tumor 
■ Peripheral blood 
■ Lymphnode 
■ Normal (prophylactic mastectomies) 

● Largest single cell immune map based on tissue residence.



82 clusters
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50K cells
82 clusters

Higher entropy shows more mixing of patients with Biscuit

Map of immune cells from 8 breast cancer patients 
Normalized by BISCUIT



Tregs

B cells

NK cells
T cells

82 clusters 41

Map of immune cells from 8 breast cancer patients 
Normalized by BISCUIT

macrophages

Cytotoxic 
T

DCs

monocytes

neutrophils

Central 
memory 

T



Impact of Environments

Tregs

Monocytic        
cells B cells

NK cells
T cells
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Tissues



What are the differences 
across inferred cell 
subpopulations?

Tregs

Monocytic        
cells B cells

NK cells
T cells

82 clusters

43



T cell activation: First component of variation

● Correlated genes enriched for cytokine production & signaling, lymphocyte 
activation, leukocyte differentiation, ligand receptor interaction
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T cell activation: First component of variation

● Comparing distribution of cells along the activation component shows tumor is more 
activated.

45

B
lo

od

N
or

m
al

Ly
m

ph
no

de

Tu
m

orC
el

l 
D

en
si

ty

T 
ce

ll 
A

ct
iv

at
io

n 
C

om
po

ne
nt



Activation state of each cluster
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Activation of monocytic cells: first components of variation 
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Covariance patterns identify Treg clusters

Markers differentially expressed in mean but differ in covariance patterns 
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Different covariance patterns of immunotherapy targets in Tregs 
across patients

● Incorporating personalized 
co-expression of drug 
targets can  broaden the 
scope of immunotherapy
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Macrophage clusters differ in covariance between M1/M2 markers



Summary
● Analyzing single cell data involves computational challenges: dropouts, 

technical variation dependent on cell types
● BISCUIT: 

○ A bayesian approach for simultaneous clustering and imputing

○ Clusters identified with both mean and gene-gene covariance patterns

○ Incorporating covariance informations improves normalization and imputing

● Map of tumor-immune ecosystem in breast cancer 
○ Single cell data for 50K CD45+ cells from 8 patients analyzed with Biscuit

○ Substantial diversity of immune cell types driven by environment

○ Activation of T cells and monocytic cell types explain most of variation

○ Covariance patterns can be informative in characterization of cell types and development of 

personalized  treatments
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R code:
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