Bayesian Inference for Single-cell ClUstering and ImpuTing (BISCUIT)

Elham Azizi

Memorial Sloan Kettering Cancer Center

BioC 2017: Where Software and Biology Connect

Profiling Tumor-Immune Ecosystem in Breast Cancer

- Immunotherapy treatments successful only in a subset of patients and cancer types
- Underlying biology determining success is not known
- Variability in responses suggest a complex immune environment
- Goal: Unsupervised characterization of tumor-infiltrating immune subpopulations across subtypes of breast cancer, identify impact of environmental cues
- Understanding the tumor-immune ecosystem can guide development of treatments to activate immune cells against the tumor
- Pilot Data: Single-cell RNA-seq 9000 CD45+ immune cells from 4 tumors (patients)

*figure adapted from Kroemer Nat Med 2015

Collaboration with Alexander Rudensky, MSKCC

Single-cell RNA-seq reveals heterogeneity in expression

Measurement of gene expression at resolution of single cells

indrop (Klein et al Cell 2015)

Single-cell RNA-seq data for immune cells from 4 breast cancer tumors

9000 CD45+ cells from 4 tumors

- Normalization by library size
 - Unclear structure of cell types
 - Large patient biases

Problems of scRNA-seq data:

- Sampling sparse amounts of mRNA leads to "Drop-outs"
- Amplification differences
- Cell-type specific capture rates

Goal: Characterizing cell subpopulations using Single-cell RNA-seq data

Count Matrix Cells

2D projection of cells (TSNE)

Cluster 1 Cluster 2 Cluster 3

Problems: Single-cell RNA-seq data involves significant dropouts and library size variation

Observed Count Matrix Cells

2D projection of cells (TSNE)

Common Approach:

Normalizing independent of cell types

Observed Count Matrix

Cells

To mean/median library size Downsampling BASiCS with spike-ins/ERCCs

Problems:

- Dropouts not resolved Zeros remain zero!
- Removes biological stochasticity specific to cell type
- Leads to improper clustering; Biased downstream analysis

Main Concepts behind Biscuit for Normalization and Imputing

Two ideas for imputing expression in Single-cell RNA-seq data

Problem #1: Imputing

Idea 1: Impute dropouts based on cell type

No expression of Gene A in a cell

But we observe cells with same type mostly have high expression of Gene A

Problem #1: Imputing

Idea 1: Impute dropouts based on cell type

No expression of **Gene A** in a cell

But we observe cells with same type mostly have high expression of Gene A

Impute dropout in Gene A based on similar cells

Idea 2: Impute dropouts based on co-expression patterns

No significant inference based on similar cells

Idea 2: Impute dropouts based on co-expression patterns

No significant inference based on similar cells

However Gene A always co-expressed with Gene B in cells of same type

Idea 2: Impute dropouts based on co-expression patterns

No significant inference based on similar cells

However Gene A always co-expressed with Gene B in cells of same type

Impute dropout in Gene A based on Gene B

Problem #2: Normalization

Normalization of Single-cell RNA-seq data

In addition to imputing dropouts, we need to **normalize** data by library size

Problem with Global Normalization

Problem #2: Normalization

Problem with Global Normalization

Key: Different normalization for each cell type

Chicken and egg problem:

Normalize based on cell types but we do not know cell types!

Approach: Simultaneous inference of clusters and imputing parameters

TSNE 2

Approach: Simultaneous inference of clusters and imputing parameters

Modeling Single-cell data using a Bayesian Mixture Model

Modeling Clusters of Cells using a Bayesian Mixture Model

Ideal Count Matrix (normalized)

Cluster 1 Cluster 2 Cluster 3

Modeling Clusters of Cells using a Bayesian Mixture Model

Ideal Count Matrix (normalized)

Modeling Clusters of Cells using a Bayesian Mixture Model

Cluster 1 Cluster 2 Cluster 3

24

Generative Model

Generative Model with Technical Variation

BISCUIT (Bayesian Inference for Single-cell ClUstering and ImpuTing)

Model Specification

$$\begin{aligned} \{ \boldsymbol{x} \}_{j}^{(1,\cdots,d)} | z_{j} &= k \stackrel{\text{ind}}{\sim} \mathcal{N}(\alpha_{j}\boldsymbol{\mu}_{k},\beta_{j}\boldsymbol{\Sigma}_{k}) \\ \boldsymbol{y}_{j} &\sim \mathcal{N}(\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) \\ \boldsymbol{\mu}_{k} &\sim \mathcal{N}(\boldsymbol{\mu}',\boldsymbol{\Sigma}'), \quad \boldsymbol{\Sigma}_{k}^{-1} \sim Wish(H'^{-1},\sigma') \\ \boldsymbol{\mu}' &\sim \mathcal{N}(\boldsymbol{\mu}'',\boldsymbol{\Sigma}''), \quad \boldsymbol{\Sigma}'^{-1} \sim Wish(d,\frac{1}{d\boldsymbol{\Sigma}''}) \\ H' &\sim Wish(d,\frac{1}{d}\boldsymbol{\Sigma}''), \quad \sigma' \sim InvGamma(1,\frac{1}{d}) - 1 + d \\ z_{j} | \boldsymbol{\pi} \stackrel{\text{iid}}{\sim} Mult(z_{j} | \boldsymbol{\pi}), \quad \boldsymbol{\pi} | \varphi, K \sim Dir(\boldsymbol{\pi} | \frac{\varphi}{K}, \cdots, \frac{\varphi}{K}) \\ \varphi^{-1} &\sim Gamma(1,1) \\ \alpha_{j} \sim \mathcal{N}(\nu,\delta^{2}), \quad \beta_{j} \sim InvGamma(\omega,\theta) \end{aligned}$$
(1) where $j = (1,\cdots,n), \, \boldsymbol{\mu}''$ is the empirical mean and $\boldsymbol{\Sigma}''$ is the empirical covariance.

Prabhakaran*, Azizi* ICML 2016

Inference Algorithm

Parallel Sampling from derived conditional posterior distributions: *P*(*parameter*| *data*, *other parameters*)

Performance on Simulated Data

Data simulated from model for 100 cells, 50 genes in 3 clusters

Confusion matrices showing true labels and those from MCMC-based methods

Boxplots of F-scores obtained in 15 experiments with randomly-generated data

Prabhakaran*, Azizi* ICML 2016

30

Model Mismatch:

Robustness when counts are not LogNormal

(Log) Negative binomial

Prabhakaran*, Azizi* ICML 2016

Performance on Single-cell Data Zeisel et al., 2015

- 3005 mouse cortex cells, with UMIs
- Deep coverage gives good ground truth for **7 Cell types**
- Selected 558 genes with largest standard deviation across cells

Fit model to *log(counts+1*)

Comparison to other methods

Cluster-dependent Imputing & Normalizing

$$\boldsymbol{y}_{j} \sim N(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

Impute & Normalize With a linear transformation

$$m{y}_j = A m{x}_j + b$$

 $A = rac{1}{eta} I$
 $b = (I - lpha A) m{\mu}_k$

Cluster-dependent Imputing & Normalizing

Characterizing tumor-infiltrating immune cells in breast cancer

Single-cell RNA-seq data for immune cells from 4 breast cancer tumors

Single-cell RNA-seq data for immune cells from 4 breast cancer tumors

Impact of environment in immune cell heterogeneity

- Little known about how tissue microenvironment modulates anti-tumor immunity
- Collected 50K CD45+ leukocytes from 8 patients
 - Different ranges of tumor grade, ER, PR, Her2, age, two cases of metastases
 - Different environments (tissues):
 - Tumor
 - Peripheral blood
 - Lymphnode
 - Normal (prophylactic mastectomies)
- Largest single cell immune map based on tissue residence.

Map of immune cells from 8 breast cancer patients Normalized by **BISCUIT**

1.5

1.5

2

2

Map of immune cells from 8 breast cancer patients Normalized by BISCUIT

82 clusters

Tissues

Impact of Environments

What are the differences across inferred cell subpopulations?

T cell activation: First component of variation

• Correlated genes enriched for cytokine production & signaling, lymphocyte activation, leukocyte differentiation, ligand receptor interaction

T cell activation: First component of variation

• Comparing distribution of cells along the activation component shows tumor is more activated.

Activation state of each cluster

Activation of monocytic cells: first components of variation

Covariance patterns identify Treg clusters

Markers differentially expressed in mean but differ in covariance patterns

Different covariance patterns of immunotherapy targets in Tregs across patients

 Incorporating personalized co-expression of drug targets can broaden the scope of immunotherapy

Macrophage clusters differ in covariance between M1/M2 markers

Summary

- Analyzing single cell data involves computational challenges: dropouts, technical variation dependent on cell types
- BISCUIT:
 - A bayesian approach for simultaneous clustering and imputing
 - Clusters identified with both mean and gene-gene covariance patterns
 - Incorporating covariance informations improves normalization and imputing
- Map of tumor-immune ecosystem in breast cancer
 - Single cell data for 50K CD45+ cells from 8 patients analyzed with Biscuit
 - Substantial diversity of immune cell types driven by environment
 - Activation of T cells and monocytic cell types explain most of variation
 - Covariance patterns can be informative in characterization of cell types and development of personalized treatments

Acknowledgments

Dana Pe'er Alexander Rudensky

Barbara Engelhardt (Princeton) David Blei (Columbia) <u>Pe'er Lab</u> Sandhya Prabhakaran Ambrose Carr Andrew Cornish Linas Mazutis Vaidotas Kiseliovas Juozas Nainys <u>Rudensky Lab</u> George Plitas Kasia Konopacki

R code:

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016

Email elham.azizi@gmail.com