Analyzing 3-D genome organization

Martin Aryee

http://www.aidenlab.org

Massachusetts General Hospital Harvard T.H. Chan School of Public Health Broad Institute

Short region of DNA double helix

"Beads on a string" form of chromatin

30-nm chromatin fibre of packed nucleosomes

Section of chromosome in an extended form

Condensed section of chromosome

Entire mitotic chromosome

Felsenfeld and Groudine. Nature, 2003

Chromosomes exhibit non-random spatial organization

Dekker and Misteli, Cold Spring Harb Perspect Biol (2015)

Gene repositioning is associated with gene activation

Silenced gene

Active, expressed gene

Green = anti-lamin B Red = IgH locus

Kosak et al., Science (2002)

Enhancer - promoter looping

© 2010 Nature Education

http://www.nature.com/scitable/topicpage/gene-expression-14121669

Disruption of genome topology in cancer

"Structural" vs. "Functional" loops

Flavahan and Drier et al., Nature (2015) Image from Grimmer & Costello, Nature (2015)

Genome topology assays

a 3C: converting chromatin interactions into ligation products

3C	4C	5C
One-by-one All-by-all	One-by-all	Many-by-many
	4)	f
PCR or sequencing	Inverse PCR sequencing	Multiplexed LMA sequencing

~200M-500M Reads

Nature Reviews | Genetics

• Key metric for both Hi-C and ChIA-PET: Fraction of paired-end read ("PETs") supporting long-range interactions

https://www.bioinformatics.babraham.ac.uk/projects/hicup/scripts_description/

- Poor Hi-C library: <20% long-range (>20kb) pairs
- Good Hi-C library: ~40% long-range (>20kb) pairs
- A shallow sequencing run (~5M reads) is sufficient to assess library quality

QC: Hi-C

HiC data: From read pairs to an interaction matrix

Chromosome A

Adapted from Lun et al., BMC Bioinformatics, 2015, Volume 16, Number 1, Page 1

Resolution (bin size)	Number of matrix cells				
1 Mbase	~10M				
10 kbase	~100B				

HiC data: From read pairs to an interaction matrix

From Ulianov, S.V., Gavrilov, A.A., Razin, S.V., 2015. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. In: Jeon, K.W. (Ed.), International Review of Cell and Molecular Biology, pp. 183-244. ISBN: 9780128022825 Copyright © 2015 Elsevier Inc. All rights reserved. Academic Press

Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin Domains: The Unit of Chromosome Organization. Molecular Cell 62, 668–680 (2016).

3D genome organization at multiple scales

Α

Chromosor	00,000 -	1 Scale (kp)
	10,000 -	
Topologica Associatir Domains	1000 -	
Gene loop	100 - 10 -	
	1 -	
Nucleosom	•	

Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. - PubMed - NCBI. Cell 159, 374–387 (2014).

HiChIP / ChIA-PET data: From read pairs to an interaction matrix

Processing steps:

- 1. Identify loop anchors (i.e. ChIP peaks)
- 2. Anchor pairs joined by PETs are putative loops
- 3. Count PETs (paired-end reads) per putative loop
- 4. Determine loop significance (i.e. is the number of PETs higher than the background?)

PET = Paired End Tag

How long are chromatin loops?

Distance between PETs

Hi-C All pairwise interactions

Chr 1

Adapted from: Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin Domains: The Unit of Chromosome Organization. Molecular Cell 62, 668–680 (2016).

ChIA-PET Pairwise interactions between loop anchor loci

HiC

ChIA-PET: CTCF loops

ChIA-PET: POL2 loops

http://dnalandscaper.aryeelab.org

Hi-C and ChIA-PET are complementary

Differential topology analysis: POL2 ChIA-PET

K562

- RP11-661B11.3

Legend

enhancer - promoter

CTCF - CTCF

http://dnalandscaper.aryeelab.org

Pol2 ChIA-PET loops

Principal Component 2

PCA of ChIA-PET Counts Matrix

PC1

ENCODE Project Data

Sample 2

Need to define a common anchor set:

Anchors

Home » Bioconductor 3.4 » Software Packages » diffloop

diffloop

http://bioconductor.org/packages/diffloop/

Differential loops: diffloop

Loops

PET counts

PET = paired end tag

Genome-wide analysis of differential looping

- Genome-wide identification of POL2 ChIA-PET loops in MCF7 and K562
- At an FDR of 1%, there are > 2,600 differential loops
- Nearly 2,000 were classified as enhancer-promoter loops (another 500 p-p)
- Target genes in MCF7 enriched for Estrogen Response Pathways

POL2 loop strength correlates with expression

Gene expression

POL2 ChIA-PET

Epigenetic correlates of enhancer-promoter looping: DNA Methylation

POL2 ChIA-PET

Epigenetic correlates of enhancer-promoter looping: H3K27Ac

⁷ac log fold change (K562/MCF7)

POL2 ChIA-PET

•

HiChIP: efficient and sensitive analysis of proteindirected genome architecture

Maxwell R Mumbach, Adam J Rubin, Ryan A Flynn, Chao Dai, Paul A Khavari, William J Greenleaf & Howard Y Chang

Affiliations | Contributions | Corresponding author

Nature Methods 13, 919–922 (2016) | doi:10.1038/nmeth.3999 Received 02 May 2016 | Accepted 10 August 2016 | Published online 19 September 2016

< 🔒

HiChIP

- Protocol allows for < 1 million cells
- Higher read efficiency than ChIA-PET
- Shorter protocol

aryeelab / hichipper Code Issues 1 Pull requests 0 Project Branch: master - hichipper / README.md caleblareau added varying parameter comparison contributors 2 contributors 2 2 contr

hichipper

This package is maintained by Caleb Lareau in the install version is provided through PyPi.

HiChI

			O Unwa	atch -	3	★ Sta	ar O	ş	Fork	0
ects O	💷 Wiki	Pulse	III Grap	ohs	🗘 Set	tings				
							Find f	ile	Сору р	ath
						1	18fb7fe	on D	ec 4, 2	016
									, -	
				Raw	Blam	e Hi	story	Ţ		Ī
Aryee Lab	. Source co	ode is made	freely a	ivailabl	e here	e and a	a pacl	kage	d	
	Pe	ak								
))))				X	X	0(XĮ	(
	HiChIP	Anchor								
		000	00	0				X		
P ANCNO	Ľ									

Acknowledgements

Caleb Lareau Brac Zack McCaw Sarah Jose Malagon Lopez Esm

Brad Bernstein

Rafael Irizarry

Sarah Johnstone

Alejandro Reyes

Esmat Hegazi