Estimating cell type composition in whole blood using
 differentially methylated regions

Stephanie Hicks

Bioconductor 2017

What is DNA Methylation?

m m
m

TAGCGCAATGTCGCCTT
 | |

$u m$
u

What is DNA Methylation?

m m
AT ${ }^{\bullet} G{ }^{\bullet}{ }^{\text {CGTTACTGCGGAA }}$
TAGCGCAATGTCGCCTT

I
u

\downarrow

What is DNA Methylation?

m
ATCGCGTTACTGGGGAA

$$
\begin{gathered}
\text { TAGCGCAATGTCGCCTT } \\
\mid \\
\mathrm{m} \\
\mid \\
\hline \mathrm{l}
\end{gathered}
$$

DNA methylation in whole blood correlates with age at this one CpG

Data from GSE32148

Blood is a mixture of many cell types

Whole blood cell types:

- Tcells
- CD8T
- CD4T
- Natural Killer
- Bcells
- Granulocytes
- Monocytes

Bioconductor data package available:

- Data originally from Reinius et al. (2012)
> library(FlowSorted.Blood.450k)

Cell composition changes with age

Statistical Model: Houseman et al. (2012)

$i=(1, \ldots, N)=$ whole blood samples
$j=(1, \ldots, J)=$ CpGs
$k=(1, \ldots, K)=$ cell type profiles
whole blood sample

relative cell type proportions

Measurement error

New platform technologies emerging

First approach

- Apply Houseman method using new platform technology

Problems with this approach

1. Observed methylation levels depend on platform used
2. Not all CpGs are included in new platforms

Platform-dependent differences between 450k array and RRBS platforms

Chromosome 6

Platform-dependent differences between 450k array and RRBS platforms

New platform technologies emerging

First approach

- Apply Houseman method using new platform technology

Problems with this approach

1. Observed methylation levels depend on platform
2. Not all CpGs are included in new platforms

Cell types preserve their methylation state across regions

Chromosome 14
Beta values
(Purified cell types on measured on 450k array)

- Identify regions using bumphunter BioC pkg

Recall Houseman Model:

$$
Y_{i j}=\sum_{k=1}^{K} \pi_{i k} X_{j k}+\varepsilon_{i j} \quad \begin{aligned}
& i=(1, \ldots, N)=\text { whole blood samples } \\
& j=(1, \ldots, J)=\text { CpGs } \\
& k=(1, \ldots, K)=\text { cell type profiles }
\end{aligned}
$$

Our proposed model:

$Y_{r}=\sum_{k=1}^{K} \pi_{k}\left[\left(1-Z_{r k}\right) \delta_{o, r}+Z_{r k} \delta_{1, r}\right]+\varepsilon_{r}$

$$
\begin{gathered}
\delta_{0, r} \sim N\left(\alpha_{0}, \sigma_{0}^{2}\right) \\
\delta_{1, r} \sim N\left(\alpha_{1}, \sigma_{1}^{2}\right) \\
\varepsilon_{r} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

$Z_{r k}=\left\{\begin{array}{ccl}1 & \text { if region } r \text { and cell type } k \text { is methylated } & r=(1, \ldots ., R)=\text { differentially methylated regions } \\ 0 & \text { otherwise } & k=(1, \ldots, K)=\text { cell types }\end{array}\right.$

How does our model perform?

$N=800$ whole blood samples run on 450 k microarray platform

RMSE:
0.0385

RMSE:
0.0531

Cell composition estimates from whole blood samples measured on two platforms
$N=12$ samples measured on two platforms:

- 450k microarray
- RRBS sequencing

3.1 Demo for BioC 2017

1ibrary (methylcc)

library(minfi)
library(FlowSorted.Blood.450k)
data(FlowSorted.Blood.450k)
Comparing cell composition estimates

```
# Subset RGChan
rgset <- FlowSo
```

\# Use methy7cC:
est.methylcc <- counts.methy1CC
\# Compare to mi
sampleNames (rgs
counts.minfi <-

For more information

methyICC:

https://github.com/stephaniehicks/methylCC

Comments/Suggestions:

 email: shicks@jimmy.harvard.edu GitHub \& Twitter: @stephaniehicks\#BioC2017
\#RLadies
\#dataparasite

