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Statistics versus Machine Learning

How statisticians see the world?
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Statistics versus Machine Learning

How machine learners see the world?
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Why inference is important
I In many situations we care about the identity of the features—

e.g. biomarker studies: Which genes are related to cancer?
I There is a crisis in reproducibility in Science:

John Ioannidis (2005) “Why Most Published Research
Findings Are False”

Figure 2: Cumulative odds ratio as a function of total genetic information as determined by
successive meta-analyses. a) Eight cases in which the final analysis di↵ered by more than
chance from the claims of the initial study. b) Eight cases in which a significant association
was found at the end of the meta-analysis, but was not claimed by the initial study. From
Ioannidis et al. 2001.

true null hypotheses (R) decreases, the FDR will increase.
Moreover, the e↵ect of bias can alter this dramatically. For simplicity, Ioannidis models

all sources of bias as a single factor u, which is the proportion of null hypotheses that would
not have been claimed as discoveries in the absence of bias, but which ended up as such
because of bias. There are many sources of bias which will be discussed in greater detail in
section 2.3.

The e↵ect of this bias is to modify the equation for PPV to be:

PPV = 1 � FDR =
(1 � �)R + u�R

(1 � �)R + u�R + ↵ + u(1 � ↵)

4
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The crisis- continued

I Part of the problem is non-statistical- e.g. incentives for
authors or journals to get things right.

I But part of the problem is statistical– we search through
large number of models to find the “best” one; we don’t have
good ways of assessing the strength of the evidence

I today’s talk reports some progress on the development of
statistical tools for assessing the strength of evidence, after
model selection
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Our first paper on this topic: An all “Canadian” team

Richard Lockhart          Jonathan Taylor 
Simon Fraser University !!!!!!!!!!!!!!!!Stanford!University!

Vancouver !!!!!!!!!!PhD!Student!of!Keith!Worsley,!2001!
PhD . Student of David Blackwell, !

Berkeley,!1979!!

Ryan	  Tibshirani	  ,	  	  
CMU.	  PhD	  student	  of	  Taylor	  
2011	  

	  	  	  	  	  	  	  	  	  Rob	  Tibshirani	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Stanford	  
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Some key papers in this work

I Lockhart, Taylor, Tibs & Tibs. A significance test for the
lasso. Annals of Statistics 2014

I Lee, Sun, Sun, Taylor (2013) Exact post-selection inference
with the lasso. arXiv; To appear

I Fithian, Sun, Taylor (2015) Optimal inference after model
selection. arXiv. Submitted

I Tibshirani, Ryan, Taylor, Lockhart, Tibs (2016) Exact
Post-selection Inference for Sequential Regression
Procedures. To appear, JASA

I Tian, X. and Taylor, J. (2015) Selective inference with a
randomized response. arXiv

I Fithian, Taylor, Tibs, Tibs (2015) Selective Sequential
Model Selection. arXiv Dec 2015
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What it’s like to work with Jon Taylor

8 / 42



Outline

1. The post-selection inference challenge; main examples—
Forward stepwise regression and lasso

2. A simple procedure achieving exact post-selection type I
error. No sampling required-– explicit formulae. Gaussian
regression and generalized linear models— logistic regression,
Cox model etc

3. When to stop Forward stepwise? FDR-controlling procedures
using post-selection adjusted p-values

4. New R package !!!! selectiveInference !!!!!
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NOT COVERED

1. Exponential family framework: more powerful procedures,
requiring MCMC sampling

2. Data splitting, data carving, randomized response
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What is post-selection inference?

Inference the old way
(pre-1980?) :

1. Devise a model

2. Collect data

3. Test hypotheses

Classical inference

Inference the new way:

1. Collect data

2. Select a model

3. Test hypotheses

Post-selection inference

Classical tools cannot be used post-selection, because they do not
yield valid inferences (generally, too optimistic)

The reason: classical inference considers a fixed hypothesis to be
tested, not a random one (adaptively specified)
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Leo Breiman referred to the use of classical tools for post-selection
inference as a “quiet scandal” in the statistical community.

(It’s not often Statisticians are involved in scandals)
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Linear regression

I Data (xi , yi ), i = 1, 2, . . .N; xi = (xi1, xI2, . . . xip).

I Model
yi = β0 +

∑
j

xijβj + εi

I Forward stepwise regression: greedy algorithm, adding
predictor at each stage that most reduces the training error

I Lasso

argmin
{∑

i

(yi − β0 −
∑
j

xijβj)
2 + λ ·

∑
j

|βj |
}

for some λ ≥ 0.
Either fixed λ, or over a path of λ values (Least angle
regression).
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Post selection inference
Example: Forward Stepwise regression

FS, naive FS, adjusted

lcavol 0.000 0.000
lweight 0.000 0.012

svi 0.047 0.849
lbph 0.047 0.337

pgg45 0.234 0.847
lcp 0.083 0.546
age 0.137 0.118

gleason 0.883 0.311

Table : Prostate data example: n = 88, p = 8. Naive and
selection-adjusted forward stepwise sequential tests

With Gaussian errors, P-values on the right are exact in finite
samples.
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Simulation: n = 100, p = 10, and y ,X1, . . .Xp have i.i.d. N(0, 1)
components
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Adaptive selection clearly makes χ2
1 null distribution invalid; with

nominal level of 5%, actual type I error is about 30%.
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Example: Lasso with fixed-λ
HIV data: mutations that predict response to a drug. Selection
intervals for lasso with fixed tuning parameter λ.
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Formal goal of Post-selective inference

[Lee et al. and Fithian, Sun, Taylor ]

I Having selected a model M̂ based on our data y , we’d like to
test an hypothesis Ĥ0. Note that Ĥ0 will be random — a
function of the selected model and hence of y

I If our rejection region is {T (y) ∈ R}, we want to control the
selective type I error :

Prob(T (y) ∈ R|M̂, Ĥ0) ≤ α

17 / 42



Existing approaches

I Data splitting - fit on one half of the data, do inferences on
the other half. Problem- fitted model changes varies with
random choice of “half”; loss of power. More on this later

I Permutations and related methods: not clear how to use
these, beyond the global null
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Some relevant literature

I Early work of Kiefer (1976, 1977), Brownie and Kiefer (1977),
Brown (1978) is related in spirit, but very different focus

I False coverage-statement rate (FCR) control: Benjamini and
Yekutieli (2005), Benjamini (2010), Rosenblatt and Benjamini
(2014)

I Selective inference as multiple inference: Berk, Brown, Buja,
Zhang, Zhao (2013) account for selection in regression over
all possible procedures

I Extended by Bachoc, Leeb, Potscher (2014) to cover inference
for predicted values

I Leeb and Potscher (2006, 2008) present impossibility results
on estimating the conditional or unconditional distributions of
post-selection estimators

I Debiasing approach has a different goal: Zhang, & Zhang,
Van de Geer , Buhlmann, Ritov & Dezeure, Javanmard &
Montanari et al, and Cai .

19 / 42



A key mathematical result

Polyhedral lemma: Provides a good solution for Forward Stepwise;
an optimal solution for the fixed-λ lasso

Polyhedral selection events

I Response vector y ∼ N(µ,Σ). Suppose we make a selection
that can be written as

{y : Ay ≤ b}

with A, b not depending on y . This is true for forward
stepwise regression, lasso with fixed λ, least angle
regression and other procedures.
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Some intuition for Forward stepwise regression

I Suppose that we run forward stepwise regression for k steps

I {y : Ay ≤ b} is the set of y vectors that would yield the same
predictors and their signs entered at each step.

I Each step represents a competition involving inner products
between each xj and y ; Polyhedron Ay ≤ b summarizes the
results of the competition after k steps.

I Similar result holds for Lasso (fixed-λ or LAR)
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The polyhedral lemma

[Lee et al, Ryan Tibs. et al.]
For any vector η

F
[V−,V+]

η>µ,σ2η>η
(η>y)|{Ay ≤ b} ∼ Unif(0, 1)

(truncated Gaussian distribution), where V−,V+ are (computable)
values that are functions of η,A, b.

Typically choose η so that ηT y is the partial least squares estimate
for a selected variable
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V+(y)V−(y)

Pη⊥y

Pηy

ηTy

y

η

{Ay ≤ b}
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Example: Lasso with fixed-λ
HIV data: mutations that predict response to a drug. Selection
intervals for lasso with fixed tuning parameter λ.
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Example: Lasso with λ estimated by Cross-validation

I Current work- Josh Loftus, Xiaoying Tian (Stanford)

I Can condition on the selection of λ by CV, and addition to
the selection of model

I Not clear yet how much difference is makes (vs treating it as
fixed)
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Extension to Generalized Linear Models

Logistic regression, Cox Proportional hazards model, Graphical
Lasso

I `1− penalized GLM, estimator β̂M (selected model M).
Define one-step estimator

β̄M = β̂M + λ · IM(β̂M)−1sM (1)

where IM(β̂M) is the |M| × |M| observed Fisher information
matrix of the submodel M evaluated at β̂M ; sM is sign vector
of solution.

I Resulting constraints from KKT conditions:{
diag(sM)

[
β̄M − IM(β̂M)−1λsM)

]
≥ 0

}
, (2)

I apply polyhedral lemma, to get post-selection, asymptotically
valid p-values and selection intervals
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Application to graphical lasso
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Protein pair P-values

Raf -Mek 0.789
Mek -P38 0.005
Plcg- PIP2 0.107
PIP2 -P38 0.070
PKA -P38 0.951
P38 -Jnk 0.557
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What is a good stopping rule for Forward Stepwise
Regression?

FS, naive FS, adjusted

lcavol 0.000 0.000
lweight 0.000 0.012

svi 0.047 0.849
lbph 0.047 0.337

pgg45 0.234 0.847
lcp 0.083 0.546
age 0.137 0.118

gleason 0.883 0.311

I Stop when a p-value exceeds say 0.05?

I We can do better: we can obtain a more powerful test, with
FDR (false discovery rate) control
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False Discovery Rate control using sequential p-values

G’Sell, Wager, Chouldchova, Tibs JRSSB 2015

Hypotheses H1 H2 H3 . . . Hm−1 Hm

p-values p1 p2 p3 . . . pm−1 pm

I Hypotheses are considered ordered

I Testing procedure must reject H1, . . . ,H for some
∈ {0, 1, . . . ,m}

I E.g., in sequential model selection, this is equivalent to
selecting the first k variables along the path

Goal
Construct testing procedure = (p1, . . . , pm) that gives FDR control.
Can’t use standard BH rule, because hypothesis are ordered.
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A new stopping procedure:

G’Sell, Wager, Chouldchova, Tibs JRSSB 2015

ForwardStop

k̂F = max

{
k ∈ {1, . . . , m} :

1

k

k∑
i=1

{− log(1− pi )} ≤ α
}

I Controls FDR even if null and non-null hypotheses are
intermixed.

I Very recent work of Li and Barber (2015) on Accumulation
tests generalizes the forwardStop rule
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Comparison to “Knockoffs” (Barber + Candes)

I In our experiments, the selective p-values yielded much higher
power than knockoffs: but they control different notions of
FDR.

I Knockoffs are a general procedure, applicable more broadly
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R package

On CRAN: selectiveInference. Forward stepwise regression,
Lasso, Lars, Logistic regression, Cox Model

gfit < −glmnet(x,y) (or family=”binomial” or ”survival” )
beta < − coef(gfit, s=lambda)

out < − fixedLassoInf(x,y,beta,lambda)

fsfit< − fs(x,y)

out < − fsInf(fsfit,x,y)
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Ongoing work on selective inference

I Forward stepwise with grouped variables (Loftus and Taylor)

I Many means problem (Reid, Taylor, Tibs)

I Asymptotics (Tian and Taylor, )

I Asymptotics and Bootstrap (Ryan Tibshirani+friends)

I Internal inference— comparing internally derived biomarkers
to external clinical factors– Gross, Taylor, Tibs

I data carving, randomized response
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Conclusions

I Post-selection inference is an exciting new area. Lots of
potential research problems and generalizations
(grad students take note)!!

I Coming soon: Deep Selective Inference r
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Resources

I Google → Tibshirani

I New book: Hastie, Tibshirani, Wainwright

PDF free online. Has a chapter on selective inference.
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Improving the power

I The preceding approach conditions on the part of y
orthogonal to the direction of interest η. This is for
computational convenience– yielding an analytic solution.

I Conditioning on less → more power

Are we conditioning on too much?
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Exponential family framework

I Fithian, Sun and Taylor (2014) develop an optimal theory of
post-selection inference: their selective model conditions on
less: just the sufficient statistics for the nuisance parameters
in the exponential family model.

Saturated model y = µ+ ε → condition on Pη⊥y

Selective model : y = XMβM + ε → condition on XT
M/jy

I Selective model gives the exact and uniformly most
unbiassed powerful test but usually requires accept/reject or
MCMC sampling.

I For the lasso, the saturated and selective models agree;
sampling is not required

I We will return to these p-values when we discuss stopping
rules with FDR control
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Two signals of equal strength

P-value for first predictor to enter
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Data splitting, carving, and adding noise

Further improvements in power

Fithian, Sun, Taylor, Tian

I Selective inference yields correct post-selection type I error.
But confidence intervals are sometimes quite long. How to do
better?

I Data carving: withholds a small proportion (say 10%) of
data in selection stage, then uses all data for inference
(conditioning using theory outlined above)

I Randomized response: add noise to y in selection stage.
Like withholding data, but smoother. Then use unnoised data
in inference stage. Related to differential privacy techniques.
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HIV mutation data; 250 predictors
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