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Hervé Pagès (hpages@fhcrc.org)

3 February 2014

Contents

1 An introduction to genomic ranges 1
1.1 Mandatory components of a GRanges object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Metadata columns of a GRanges object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Working with GRanges objects 3
2.1 Basic manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Common range transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Working with GRangesList objects 9

4 Working with aligned reads 11
4.1 Mapping the reads to the reference genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Working with BAM files in Bioconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Extracting the genomic ranges from a GAlignments object . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Computing the coverage of the reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 An introduction to genomic ranges

A genomic range is a region on a genome that is made of contiguous nucleotides (i.e. no gaps). It is defined by
a chromosome name (a.k.a. sequence name), a start and an end coordinate, and possibly a strand. Genomic
ranges are used to locate various things on a reference genome such as genomic features (genes, transcripts,
exons, repeat regions, etc...), aligned reads, or regions of interest (e.g. peaks detected in a ChIP-seq analysis).

In Bioconductor , the GRanges class, defined and documented in the GenomicRanges package, is used to repre-
sent a vector of genomic ranges.

1.1 Mandatory components of a GRanges object

A GRanges object contains the following mandatory components:

• A vector of sequence names, accessed with the seqnames() accessor.
• A vector of start coordinates, accessed with the start() accessor.
• A vector of end coordinates, accessed with the end() accessor.
• A vector of strand values (+, -, or *), accessed with the strand() accessor.

The vectors returned by the seqnames(), start(), end(), and strand() accessors have the same length, which
is the number of genomic ranges in the object. By definition, this is also considered to be the length of the object
and it can be obtained with length() (like with an ordinary vector).

Here is an example of a GRanges object of length 7 (i.e. with 7 genomic ranges in it):
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gr1

## GRanges with 7 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [ 10001, 10400] -

## [2] chr1 [ 5508, 5792] *

## [3] chr19 [ 25644, 27263] +

## [4] chrX [ 685, 1017] +

## [5] chrX [142501, 142501] -

## [6] chrM [ 33077, 35076] *

## [7] chr19 [ 8001, 8421] +

## ---

## seqlengths:

## chr1 chr19 chrM chrX

## NA NA NA NA

Here is another more realistic GRanges object representing a tiling of the full Yeast genome (with tiles of size
50000 nucleotides):
tiles

## GRanges with 251 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chrI [ 1, 50000] *

## [2] chrI [ 50001, 100000] *

## [3] chrI [100001, 150000] *

## [4] chrI [150001, 200000] *

## [5] chrI [200001, 230208] *

## ... ... ... ...

## [247] chrXVI [850001, 900000] *

## [248] chrXVI [900001, 948062] *

## [249] chrM [ 1, 50000] *

## [250] chrM [ 50001, 85779] *

## [251] 2micron [ 1, 6318] *

## ---

## seqlengths:

## chrI chrII chrIII chrIV chrV ... chrXIV chrXV chrXVI chrM 2micron

## 230208 813178 316617 1531919 576869 ... 784333 1091289 948062 85779 6318

An important convention to keep in mind about the start and end coordinates of a genomic range is that they are
both 1-based positions relative to the 5’ end of the plus strand of the reference sequence, even when the range is
on the minus strand. Also the nucleotides located at the start and end positions are both considered to be part of
the range (the former being the left-most nucleotide of the range and the latter its right-most nucleotide).

1.2 Metadata columns of a GRanges object

In addition to the mandatory components described above, one or more metadata columns can be stored in a
GRanges object in the form of a DataFrame that can be accessed with the mcol() accessor. The DataFrame has
one row per genomic range and its columns are considered to be the metadata columns of the GRanges object.

Here is an example of a GRanges object with 2 metadata columns:
gr2
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## GRanges with 7 ranges and 2 metadata columns:

## seqnames ranges strand | desc GC_content

## <Rle> <IRanges> <Rle> | <character> <numeric>

## [1] chr1 [ 10001, 10400] - | exon 0.550

## [2] chr1 [ 5508, 5792] * | repeat region 0.495

## [3] chr19 [ 25644, 27263] + | gene 0.562

## [4] chrX [ 685, 1017] + | exon 0.530

## [5] chrX [142501, 142501] - | exon 0.552

## [6] chrM [ 33077, 35076] * | snp <NA>

## [7] chr19 [ 8001, 8421] + | repeat region 0.510

## ---

## seqlengths:

## chr1 chr19 chrM chrX

## NA NA NA NA

Another example of a GRanges object with metadata columns is shown below. This object represents all the known
protein coding regions (CDS) on the Human genome (positions are reported with respect to reference assembly
hg19):
hg19_cds

## GRanges with 237533 ranges and 1 metadata column:

## seqnames ranges strand | gene_id

## <Rle> <IRanges> <Rle> | <CharacterList>

## [1] chr1 [ 12190, 12227] + | 100287102

## [2] chr1 [ 12595, 12721] + | 100287102

## [3] chr1 [ 13403, 13639] + | 100287102

## [4] chr1 [ 69091, 70008] + | 79501

## [5] chr1 [324343, 324345] + | 100132062,100133331

## ... ... ... ... ... ...

## [237529] chrY [26959330, 26959332] - | 57054,57135

## [237530] chrY [27184245, 27184263] - | 9083

## [237531] chrY [27184956, 27185061] - | 9083

## [237532] chrY [27187916, 27188033] - | 9083

## [237533] chrY [27190093, 27190170] - | 9083

## ---

## seqlengths:

## chr1 chr2 ... chrUn_gl000249

## 249250621 243199373 ... 38502

2 Working with GRanges objects

2.1 Basic manipulation

Exercise 1 This exercise illustrates basic manipulation of GRanges objects.

a. Load the package where the GRanges class is defined and documented.
b. Open the man page for the GRanges class and run the examples in it.
c. Display the gr object.
d. Use the seqnames() accessor to get the vector of sequence names. What is the class of this vector? Use

table() on it to count the number of genomic ranges on each reference sequence.
e. In addition to the start and end coordinates that can be obtained with the start() and end() accessors, the

width of the ranges can be obtained with the width() accessor. By definition, the width of a genomic range
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is the number of nucleotides in it. For any range, we have width = end− start+ 1.
Obtain the width of the ranges in gr.
How do you check that width is indeed the same as end− start+ 1 programmatically?

Solution:

a. The GRanges class is defined and documented in the GenomicRanges package.

library(GenomicRanges)

b. Use the class?<classname> or ?`<classname>-class` syntax to open the man page for a given class:
class?GRanges

Since there is also a constructor function for GRanges objects (the GRanges() function) documented in the
same man page, the man page can also be accessed with ?GRanges.
To run the examples in a man page, you can copy/paste them into your current session or call the example()

function on the same alias you used to open the man page (i.e. on the part following the ?):

example(GRanges)

c. The code in the examples calls the GRanges() constructor function to create the gr object:
gr

## GRanges with 10 ranges and 2 metadata columns:

## seqnames ranges strand | score GC

## <Rle> <IRanges> <Rle> | <integer> <numeric>

## a chr1 [ 1, 10] - | 1 1

## b chr2 [ 2, 10] + | 2 0.888888888888889

## c chr2 [ 3, 10] + | 3 0.777777777777778

## d chr2 [ 4, 10] * | 4 0.666666666666667

## e chr1 [ 5, 10] * | 5 0.555555555555556

## f chr1 [ 6, 10] + | 6 0.444444444444444

## g chr3 [ 7, 10] + | 7 0.333333333333333

## h chr3 [ 8, 10] + | 8 0.222222222222222

## i chr3 [ 9, 10] - | 9 0.111111111111111

## j chr3 [10, 10] - | 10 0

## ---

## seqlengths:

## chr1 chr2 chr3

## 1000 2000 1500

d. The vector of sequence names can be obtained with the seqnames() accessor:

seqnames(gr)

## factor-Rle of length 10 with 4 runs

## Lengths: 1 3 2 4

## Values : chr1 chr2 chr1 chr3

## Levels(3): chr1 chr2 chr3

This is an Rle (Run Length Encoding) object:

class(seqnames(gr))

## [1] "Rle"

## attr(,"package")

## [1] "IRanges"

Using an Rle representation of a vector or factor is a simple and efficient way to reduce its size in memory
(a.k.a. its memory footprint) when it has long runs of with the same value.

e. The width of the ranges in gr:

width(gr)

## [1] 10 9 8 7 6 5 4 3 2 1
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We can check that width = end− start+ 1 with:

all(width(gr) == end(gr) - start(gr) + 1)

## [1] TRUE

Exercise 2 This exercise illustrates more basic manipulation of GRanges objects.

a. Like ordinary vectors in R, GRanges objects can have names on them (one per vector element in the object).
The mechanism for getting or setting the names is with the names getter and setter.
Obtain the names of gr.
Replace the current names with upper case names (same names but upper case).

b. Like ordinary vectors in R, GRanges objects can be subsetted with the [ operator.
Subset gr to keep only the ranges located on the + strand.

c. Obtain the metadata columns in gr.
Obtain the GC column.
Subset gr to keep only the ranges for which the GC value is ¿= 0.3 and ¡= 0.6.

d. Finally, add a new metadata column to gr.

Solution:

a. We get the names with:

names(gr)

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

b. We use the toupper() function to translate the names from lower to upper case, and then we set the new
names back on gr with the names() setter (i.e. we call names() on the left side of the assignment):

names(gr) <- toupper(names(gr))

c. To obtain all the metadata columns:

mcols(gr)

## DataFrame with 10 rows and 2 columns

## score GC

## <integer> <numeric>

## 1 1 1.0000

## 2 2 0.8889

## 3 3 0.7778

## 4 4 0.6667

## 5 5 0.5556

## 6 6 0.4444

## 7 7 0.3333

## 8 8 0.2222

## 9 9 0.1111

## 10 10 0.0000

To obtain the GC column:

mcols(gr)$GC

## [1] 1.0000 0.8889 0.7778 0.6667 0.5556 0.4444 0.3333 0.2222 0.1111 0.0000

To keep only the ranges for which GC is ¿= 0.3 and ¡= 0.6:

gr[mcols(gr)$GC >= 0.3 & mcols(gr)$GC <= 0.6]

## GRanges with 3 ranges and 2 metadata columns:

## seqnames ranges strand | score GC

## <Rle> <IRanges> <Rle> | <integer> <numeric>

## E chr1 [5, 10] * | 5 0.555555555555556

## F chr1 [6, 10] + | 6 0.444444444444444
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## G chr3 [7, 10] + | 7 0.333333333333333

## ---

## seqlengths:

## chr1 chr2 chr3

## 1000 2000 1500

Note that this subsetting can be performed more conveniently with subset():

subset(gr, GC >= 0.3 & GC <= 0.6)

## GRanges with 3 ranges and 2 metadata columns:

## seqnames ranges strand | score GC

## <Rle> <IRanges> <Rle> | <integer> <numeric>

## E chr1 [5, 10] * | 5 0.555555555555556

## F chr1 [6, 10] + | 6 0.444444444444444

## G chr3 [7, 10] + | 7 0.333333333333333

## ---

## seqlengths:

## chr1 chr2 chr3

## 1000 2000 1500

d. To set a metadata column on gr, we use the same form as for getting a metadata column but this time on
the left side of the assignment:

mcols(gr)$id <- sprintf("ID%03d", seq_along(gr))

gr

## GRanges with 10 ranges and 3 metadata columns:

## seqnames ranges strand | score GC id

## <Rle> <IRanges> <Rle> | <integer> <numeric> <character>

## A chr1 [ 1, 10] - | 1 1.0000 ID001

## B chr2 [ 2, 10] + | 2 0.8889 ID002

## C chr2 [ 3, 10] + | 3 0.7778 ID003

## D chr2 [ 4, 10] * | 4 0.6667 ID004

## E chr1 [ 5, 10] * | 5 0.5556 ID005

## F chr1 [ 6, 10] + | 6 0.4444 ID006

## G chr3 [ 7, 10] + | 7 0.3333 ID007

## H chr3 [ 8, 10] + | 8 0.2222 ID008

## I chr3 [ 9, 10] - | 9 0.1111 ID009

## J chr3 [10, 10] - | 10 0.0000 ID010

## ---

## seqlengths:

## chr1 chr2 chr3

## 1000 2000 1500

2.2 Common range transformations

The ranges in a GRanges object can be transformed in different ways. Some of the most common range transfor-
mations are shown on figure˜1 below.

Exercise 3 In this exercise we perform some range transformations on a GRanges object.

a. Use shift to shift the ranges in gr by 500 positions to the right. Store the result in gr2.
b. Find the man page for the flank method that operates on GRanges objects. Obtain the upstream flanking

regions of width 100 for gr2, that is, the regions corresponding to the 100 nucleotides located upstream of
each range in gr2 when moving in the 5’ to 3’ direction.
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Figure 1: Range transformations shift(), disjoin(), and reduce(). For clarity, gr0 is a GRanges object with all
its ranges on the same reference sequence and strand.

c. “Display” the shift() function. What kind of function is that? Which arguments are involved in the dispatch
mechanism?

d. Use showMethods to list all the shift methods. Which method is used when we call shift() on a GRanges
object? Try to open the man page for this method using the ?<something-here> syntax.

Solution:

a. gr2 <- shift(gr, 500)

b. flank(gr2, width=100)

## GRanges with 10 ranges and 3 metadata columns:

## seqnames ranges strand | score GC id

## <Rle> <IRanges> <Rle> | <integer> <numeric> <character>

## A chr1 [511, 610] - | 1 1.0000 ID001

## B chr2 [402, 501] + | 2 0.8889 ID002

## C chr2 [403, 502] + | 3 0.7778 ID003

## D chr2 [404, 503] * | 4 0.6667 ID004

## E chr1 [405, 504] * | 5 0.5556 ID005

## F chr1 [406, 505] + | 6 0.4444 ID006

## G chr3 [407, 506] + | 7 0.3333 ID007

## H chr3 [408, 507] + | 8 0.2222 ID008
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## I chr3 [511, 610] - | 9 0.1111 ID009

## J chr3 [511, 610] - | 10 0.0000 ID010

## ---

## seqlengths:

## chr1 chr2 chr3

## 1000 2000 1500

c. To “display” the shift() function, we just type the name of the function followed by ¡Enter¿, like with any
other object in R. For an ordinary function, this displays the body of the function (i.e. its implementation).
However, for shift(), we get something different:
shift

## standardGeneric for "shift" defined from package "IRanges"

##

## function (x, shift = 0L, use.names = TRUE)

## standardGeneric("shift")

## <environment: 0x4457510>

## Methods may be defined for arguments: x

## Use showMethods("shift") for currently available ones.

This is because shift() is not an ordinary function but an S4 generic function. A generic function doesn’t do
the work: instead it calls the appropriate method for doing it. The selection of the appropriate method is done
internally by the dispatch mechanism. The dispatch mechanism looks at the types of the arguments that are
passed to the generic function and selects the most specific method compatible with these arguments. In
the case of shift(), only 1 argument is considered for dispatch (the first argument x).

d. To list all the shift methods:

showMethods(shift)

## Function: shift (package IRanges)

## x="CompressedIRangesList"

## x="GRanges"

## (inherited from: x="GenomicRanges")

## x="GRangesList"

## x="GenomicRanges"

## x="IRanges"

## (inherited from: x="Ranges")

## x="IntervalForest"

## x="Ranges"

## x="RangesList"

## x="SummarizedExperiment"

## x="Views"

To see the method that is used when x is a GRanges object:

selectMethod(shift, "GRanges")

## Method Definition:

##

## function (x, shift = 0L, use.names = TRUE)

## {

## ranges <- shift(ranges(x), shift, use.names = use.names)

## clone(x, ranges = ranges)

## }

## <environment: namespace:GenomicRanges>

##

## Signatures:

## x

## target "GRanges"

## defined "GenomicRanges"
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Pay attention to the last 2 lines. One complication here is that the method that is used when x is a GRanges
object is not defined specifically for the GRanges class but for the GenomicRanges class which is a parent
class of the GRanges class. We can check that gr is indeed a GenomicRanges object, even though it’s not
a GenomicRanges instance:

is(gr, "GenomicRanges")

## [1] TRUE

class(gr)

## [1] "GRanges"

## attr(,"package")

## [1] "GenomicRanges"

To open the man page for this method:
?`shift,GenomicRanges-method`

3 Working with GRangesList objects

So far we’ve seen GRanges objects and how to work on them. One limitation of the GRanges container is that it
can only be used for storing genomic regions that are made of contiguous nucleotides (i.e. no gaps). However,
some types of genomic regions (or genomic features) cannot always be represented with a single genomic range.
For example, some aligners used on RNA-seq data can produce aligned reads (called junction reads or gapped
reads) that need to be represented with 2 or more genomic ranges. In that case a GRangesList object needs to
be used to store the ranges.

More formally speaking, a GRangesList object also contains genomic ranges but now they are divided into groups.
Each group consists of one or more genomic ranges that represent a complex region (e.g. all the exons of a given
gene, a junction read, etc...)

To keep things easy and intuitive, the GRangesList container has been designed so that it can be manipulated like
an ordinary list for most usual list operations. For example, each individual group can be extracted with [[, and
length() returns the total number of groups in the object.

Exercise 4 In this exercise, we use a GRangesList object to store genomic features (e.g. exons) grouped by
parent feature (e.g. transcript or gene). The input data we use for this is a gene model.

a. Load the TxDb.Hsapiens.UCSC.hg19.knownGene package. This package contains a gene model for Human
i.e. the genomic ranges of all the known Human transcripts, exons, and CDS. The gene model can be
accessed via the TxDb.Hsapiens.UCSC.hg19.knownGene object which is basically a pointer to an SQLite
database containing the gene model. Display this object.

b. Use the exonsBy() function on the TxDb.Hsapiens.UCSC.hg19.knownGene object to extract the exons grouped
by gene (check the exonsBy man page for how to do that). What kind of object is returned?

c. How many genes are represented in this object?
d. Note that this GRangesList object has names and that the names are Entrez Gene ids. Use %in% to check

that Entrez Gene 1008 is present. Extract the exons of Entrez Gene 1008 in a GRanges object.
How many exons are in Entrez Gene 1008? On which chromosome and strand are they?

e. The elementLengths() function is a very fast way to compute the length of each list element of a list-like
object x. It’s equivalent to (but much faster than) doing sapply(x, length). Use it on the GRangesList
object to compute the number of exons in each gene.
Which gene has the most exons? How many exons does it have?

Solution:
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a. library(TxDb.Hsapiens.UCSC.hg19.knownGene)

TxDb.Hsapiens.UCSC.hg19.knownGene

## TranscriptDb object:

## | Db type: TranscriptDb

## | Supporting package: GenomicFeatures

## | Data source: UCSC

## | Genome: hg19

## | Organism: Homo sapiens

## | UCSC Table: knownGene

## | Resource URL: http://genome.ucsc.edu/

## | Type of Gene ID: Entrez Gene ID

## | Full dataset: yes

## | miRBase build ID: GRCh37

## | transcript_nrow: 82960

## | exon_nrow: 289969

## | cds_nrow: 237533

## | Db created by: GenomicFeatures package from Bioconductor

## | Creation time: 2013-09-19 00:15:15 -0700 (Thu, 19 Sep 2013)

## | GenomicFeatures version at creation time: 1.13.40

## | RSQLite version at creation time: 0.11.4

## | DBSCHEMAVERSION: 1.0

b. ex_by_gn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, by="gene")

class(ex_by_gn)

## [1] "GRangesList"

## attr(,"package")

## [1] "GenomicRanges"

c. Number of genes:

length(ex_by_gn)

## [1] 23459

d. Is Entrez Gene 1008 present?

"1008" %in% names(ex_by_gn)

## [1] TRUE

To extract the exons in a GRanges object, we need to use [[, not [:

ex_by_gn[["1008"]]

## GRanges with 12 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] chr5 [24487209, 24488262] - | 80706 <NA>

## [2] chr5 [24491685, 24491936] - | 80707 <NA>

## [3] chr5 [24492926, 24493034] - | 80708 <NA>

## [4] chr5 [24498507, 24498628] - | 80709 <NA>

## [5] chr5 [24505221, 24505357] - | 80710 <NA>

## ... ... ... ... ... ... ...

## [8] chr5 [24535221, 24535388] - | 80713 <NA>

## [9] chr5 [24535812, 24535931] - | 80714 <NA>

## [10] chr5 [24537489, 24537783] - | 80715 <NA>

## [11] chr5 [24593369, 24593722] - | 80716 <NA>

## [12] chr5 [24644703, 24645085] - | 80717 <NA>

## ---

## seqlengths:

## chr1 chr2 ... chrUn_gl000249
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## 249250621 243199373 ... 38502

Also note that it’s important to subset with the "1008" string here, not the 1008 number. Why? Be aware that
this is a common pitfall!

seqnames(ex_by_gn[["1008"]])

## factor-Rle of length 12 with 1 run

## Lengths: 12

## Values : chr5

## Levels(93): chr1 chr2 chr3 chr4 ... chrUn_gl000247 chrUn_gl000248 chrUn_gl000249

strand(ex_by_gn[["1008"]])

## factor-Rle of length 12 with 1 run

## Lengths: 12

## Values : -

## Levels(3): + - *

All the exons in this gene are on chromosome 12 and minus strand.
e. Number of exons in each gene:

nex_per_gn <- elementLengths(ex_by_gn)

Max number of exons per gene:

max(nex_per_gn)

## [1] 481

Gene with the most exons:

which(nex_per_gn == max(nex_per_gn))

## 1302

## 4260

Entrez Gene ”1302”.
Alternatively, the ”which” and ”how many” questions can both be answered with which.max():

which.max(nex_per_gn)

## 1302

## 4260

4 Working with aligned reads

4.1 Mapping the reads to the reference genome

A high-throughput sequencing experiment (a.k.a. HTS experiment, or new generation sequencing experiment, or
NGS experiment) generates a huge quantity of short reads (typically millions). Depending on the technology used
by the sequencing machine, the length of the reads can vary between 40 and 300 nucleotides. One of the first
steps of almost any HTS data analysis is the mapping of the reads to the reference genome (or sometimes to the
transcriptome). This mapping process consists in finding the genomic location of the read based on its similarity
with the nucleotide content of the reference genome at this location. This step is very computational intensive and
is usually performed outside Bioconductor with a 3rd party aligner like Bowtie, BWA, GSNAP, TopHat, etc...

Reads coming from an RNA-seq experiment (i.e. RNA was sequenced, not DNA) present an additional challenge:
some of them, called junction reads, can span 2 or more exons separated by introns. In that case the aligner
needs to be able to break the read into 2 or more pieces and map each individual piece to the reference genome.
A few aligners like TopHat or GSNAP support junction reads. Others like Bowtie or BWA don’t.

The result of the alignment process is typically stored in BAM files. The BAM format (and its plain text version
SAM) is a generic format for storing large nucleotide sequence alignments. It is specified and developped by the
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SAMtools project (http://samtools.sourceforge.net/). The SAMtools project also provides various utilities for
manipulating alignments in the SAM or BAM format.

4.2 Working with BAM files in Bioconductor

After the reads have been aligned and stored in BAM files (typically one file per sample or sequencing run), many
packages are available in Bioconductor for performing different kinds of downstream analyses. See the High-
ThroughputSequencing view under the Software and AssayTechnologies views on the Bioconductor website for a
list of these packages (http://bioconductor.org/packages/release/BiocViews.html#___HighThroughputSequencing).

One of these packages, the Rsamtools package, provides an interface to the SAMtools utilities for manipulating
BAM files, including for loading aligned reads in R. Other packages like the ShortRead package, provide some
high-level tools for manipulating aligned reads. One container, the GAlignments container, has been specifically
designed for storing aligned reads, including junction reads (a.k.a. gapped alignents). It is defined and documented
in the GenomicRanges package.

The parathyroidSE package is a data package that contains aligned reads stored in BAM files. The paths to these
BAM files can be obtained with:

library(parathyroidSE)

bamdir <- system.file("extdata", package="parathyroidSE")

bampaths <- list.files(bamdir, pattern="bam$", full.names=TRUE)

bampaths

## [1] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479052.bam"

## [2] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479053.bam"

## [3] "/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.0-2.13/parathyroidSE/extdata/SRR479054.bam"

The aligned reads can be loaded from a BAM file with the readGAlignmentsFromBam() function from the Rsamtools
package:

library(Rsamtools)

reads <- readGAlignmentsFromBam(bampaths[1])

reads

## GAlignments with 9973 alignments and 0 metadata columns:

## seqnames strand cigar qwidth start end width ngap

## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

## [1] 10 + 101M 101 59953037 59953137 101 0

## [2] 10 - 101M 101 59953061 59953161 101 0

## [3] 11 + 101M 101 209517 209617 101 0

## [4] 10 + 101M 101 121691690 121691790 101 0

## [5] 10 - 101M 101 121691702 121691802 101 0

## ... ... ... ... ... ... ... ... ...

## [9969] 14 - 71M117N30M 101 24035299 24035516 218 1

## [9970] 16 + 101M 101 56466390 56466490 101 0

## [9971] 16 - 101M 101 56466533 56466633 101 0

## [9972] MT + 101M 101 6194 6294 101 0

## [9973] MT - 101M 101 6316 6416 101 0

## ---

## seqlengths:

## 1 10 11 12 ... 9 MT X Y

## 249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

The returned value is a GAlignments object. It is a vector-like container that has one element per aligned read. An
important difference with GRanges objects is that an aligned read can be associated with more than one genomic

http://samtools.sourceforge.net/
http://bioconductor.org/packages/release/BiocViews.html#___HighThroughputSequencing
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range. We’ll see later how to extract those ranges but before we do that, we first need to talk about the cigar

component of the object.

The components displayed above can be accessed with accessor functions that are named like the component
itself (e.g. qwidth() for the qwidth component, ngap() for the ngap component, etc...). One component of
particular interest is the cigar component. It contains short strings called CIGAR strings that describe exactly
the geometry of the alignments i.e. how each read aligns to the reference sequence. CIGAR strings are made
of numbers and letters. Each letters represents a CIGAR operation and is preceeded by a number that specifies
the length of the operation. The most important operations are M, I, D, and N. The format of the CIGAR strings is
explained in the SAM Spec document hosted on the SAMtools website.

Exercise 5 In this exercise we learn how to load aligned reads from a BAM file into a GAlignments object and do
some basic manipulation on it.

a. Load the parathyroidSE package and use the readGAlignmentsFromBam() function from the Rsamtools pack-
age to read the third BAM file (SRR479054.bam). What kind of object is returned? Display it.

b. A gap in the alignment is called a “skipped region from the reference” in SAMtools jargon. Refer to the SAM
Spec to find out how gaps are represented in the CIGAR strings.

c. Do some of the alignments have gaps? What does this tell us about the aligner that was used to align the
reads?

d. The ngap component summarizes the number of gaps per alignment. What’s the maximum number of gaps
per alignment? Use table() to summarize the number of gaps per alignment.

Solution:

a. library(parathyroidSE)

bamdir <- system.file("extdata", package="parathyroidSE")

bampaths <- list.files(bamdir, pattern="bam$", full.names=TRUE)

reads <- readGAlignmentsFromBam(bampaths[3])

class(reads)

## [1] "GAlignments"

## attr(,"package")

## [1] "GenomicRanges"

reads

## GAlignments with 9973 alignments and 0 metadata columns:

## seqnames strand cigar qwidth start end width ngap

## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

## [1] 5 + 71M3I27M 101 118309615 118309712 98 0

## [2] 20 + 48M104N53M 101 57484587 57484791 205 1

## [3] 20 - 73M252N28M 101 57485064 57485416 353 1

## [4] 9 + 90M243N11M 101 136223457 136223800 344 1

## [5] 2 + 101M 101 9725148 9725248 101 0

## ... ... ... ... ... ... ... ... ...

## [9969] 16 + 101M 101 68849425 68849525 101 0

## [9970] 16 - 5M1173N96M 101 68856124 68857397 1274 1

## [9971] 3 + 101M 101 42700098 42700198 101 0

## [9972] 3 - 101M 101 42700121 42700221 101 0

## [9973] 2 + 101M 101 55200097 55200197 101 0

## ---

## seqlengths:

## 1 10 11 12 ... 9 MT X Y

## 249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

b. A gap in the alignment is represented with the N operation.
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c. length(grep("N", cigar(reads)))

## [1] 3109

This tells us that the aligner that was used supports junction reads.
d. Maximum number of gaps per alignment:

max(ngap(reads))

## [1] 3

table(ngap(reads))

##

## 0 1 2 3

## 6864 2853 250 6

4.3 Extracting the genomic ranges from a GAlignments object

There are 2 ways to extract the genomic ranges from a GAlignments object: one that preserves the gaps, and one
that doesn’t (i.e. the gaps are ignored). This extraction is actually achieved by coercing the GAlignments object
into a GRangesList or GRanges object.

Exercise 6 In this exercise we learn how to extract the genomic ranges from a GAlignments object.

a. Coerce this GAlignments object into a GRangesList object. Note that this coercion produces an object that
is parallel to the GAlignments object, that is, the i-th element in the GRangesList object corresponds to the
i-th element (i.e. alignment) in the GAlignments object.

b. Use elementLengths() and table() to summarize the number of ranges per list element in the GRangesList
object. How does this relate to the summary of number of gaps per alignment obtained earlier?

c. If we wanted to ignore the gaps in the reads, we would coerce the GAlignments object into a GRanges object.
Do that.

Solution:

a. read_ranges <- as(reads, "GRangesList")

b. table(elementLengths(read_ranges))

##

## 1 2 3 4

## 6864 2853 250 6

Number of ranges per alignment equals number of gaps plus one.

c. as(reads, "GRanges")

## GRanges with 9973 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] 5 [118309615, 118309712] +

## [2] 20 [ 57484587, 57484791] +

## [3] 20 [ 57485064, 57485416] -

## [4] 9 [136223457, 136223800] +

## [5] 2 [ 9725148, 9725248] +

## ... ... ... ...

## [9969] 16 [68849425, 68849525] +

## [9970] 16 [68856124, 68857397] -

## [9971] 3 [42700098, 42700198] +

## [9972] 3 [42700121, 42700221] -

## [9973] 2 [55200097, 55200197] +
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## ---

## seqlengths:

## 1 10 11 12 ... 9 MT X Y

## 249250621 135534747 135006516 133851895 ... 141213431 16569 155270560 59373566

4.4 Computing the coverage of the reads

Finally, we can use the GRangesList object obtained in the previous exercise to compute the coverage of the
reads, that is, the number of reads that cover each genomic position in the reference genome.

Exercise 7 Computing the read coverage.

a. Use the coverage() function on read ranges to compute the coverage of the reads.
What is the class of the object returned by coverage()? Display the object.

b. Extract the coverage of chromosome 12 as an integer-Rle. What is the maximum coverage on chromosome
12?

c. Use max() on the full coverage object (RleList) to get the maximum coverage on each chromosome.

Solution:

a. cvg <- coverage(read_ranges)

class(cvg)

## [1] "SimpleRleList"

## attr(,"package")

## [1] "IRanges"

cvg

## RleList of length 25

## $`1`

## integer-Rle of length 249250621 with 1891 runs

## Lengths: 565027 7 9 14 29 ... 100 480 101 100017

## Values : 0 1 2 3 4 ... 1 0 1 0

##

## $`10`

## integer-Rle of length 135534747 with 1021 runs

## Lengths: 294461 87 294 11 3 ... 92 1929 9 352312

## Values : 0 1 0 1 2 ... 1 0 1 0

##

## $`11`

## integer-Rle of length 135006516 with 1316 runs

## Lengths: 213325 30 63 811 8 ... 14 2285 86 871629

## Values : 0 1 2 0 2 ... 1 0 1 0

##

## $`12`

## integer-Rle of length 133851895 with 1416 runs

## Lengths: 404750 67 34 67 266509 ... 10445 26 1 319040

## Values : 0 1 2 1 0 ... 0 2 1 0

##

## $`13`

## integer-Rle of length 115169878 with 363 runs

## Lengths: 20567820 47 54 47 ... 3 98 3 77442

## Values : 0 1 2 1 ... 1 2 1 0

##
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## ...

## <20 more elements>

b. Coverage of chromosome 12:

cvg[["12"]]

## integer-Rle of length 133851895 with 1416 runs

## Lengths: 404750 67 34 67 266509 ... 10445 26 1 319040

## Values : 0 1 2 1 0 ... 0 2 1 0

max(cvg[["12"]])

## [1] 6

c. Maximum coverage on each chromosome:

max(cvg)

## 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 MT X Y

## 8 6 28 6 5 13 16 4 7 4 6 8 6 5 3 5 4 5 12 21 8 19 56 4 3
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