
Ranges, sequences and alignments

Michael Lawrence

July 25, 2014

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Genomic data falls into three types

Genomic Vectors (Alignment coverage)

Genomic Features (Transcripts)

Summaries (Overlap counts)
Feature

The range: grand unifier of genomic data

I We define the genomic range by:
I Sequence domain (e.g., chromosome, contig)
I Start and end
I Strand
I Annotations (e.g., score, or name)

Start End

Sequence
Domain

Width

I The genomic range
I Represents genomic features, like genes and alignments
I Indexes into genomic vectors, like sequence and coverage
I Links summaries, like RPKMs, to genomic locations

I The genome acts as a scaffold for data integration
I Ranges have a specialized structure and algebra, requiring

specialized data types and algorithms

The IRanges and GenomicRanges packages
Collaborative effort with Bioconductor

I Define core classes for representing ranges, like:
I GRanges for simple ranges (exons)
I GRangesList for compound ranges (multi-exon transcripts)

I Algorithms for transforming, comparing, summarizing ranges.
I Run-length encoding of genome-length vectors: Rle
I Encapsulation of feature-level experimental summaries and

metadata: SummarizedExperiment.

Representing a transcript with GRanges

We can represent any type of genomic range with GRanges,
including the exons of a transcript

tx1

Finding the unspliced transcript using range()

unspliced <- range(tx1)

Combining multiple transcripts in a GRangesList

txList <- GRangesList(tx1, tx2)

Finding both unspliced transcripts using range()

unspliced <- range(txList)

range() returns the appropriate result given the type of the input.

Classes are important for complex data

I Ensure the integrity/validity of data (strong typing)
I Hide implementation and enable code to express algorithms in

an abstract way (polymorphism)
I Support analysis by better representing the semantics of the

biological entity compared to an ordinary data.frame
I Science defies rigidity: we need hybrid objects that combine

strongly typed fields with arbitrary user-level metadata

Ranges algebra

Arithmetic shift, resize, restrict, flank
Set operations intersect, union, setdiff, gaps
Summaries coverage, reduce, disjoin
Comparison findOverlaps, findMatches, nearest, order

Finding "gene" regions using reduce()

exon.bins <- reduce(unlist(txList))

Generating DEXseq counting bins using disjoin()

exon.bins <- disjoin(unlist(txList))

Finding promoters using flank()

promoters <- flank(unspliced, 500)

500nt

Finding the introns using psetdiff()

introns <- psetdiff(unspliced, txList)

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Counting compatible alignments

I The findSpliceOverlaps() function in GenomicAlignments
finds compatible overlaps between transcripts and RNA-seq
read alignments.

I To be compatible a read must align completely within the
exons and the read gaps should exactly match the introns over
the read extent

A

B

The findSpliceOverlaps() algorithm

1. Match read alignments to transcripts by any overlap.
2. For each match, check that the alignment segments and exons

are identical over the range of the alignment.

Overlap detection algorithm

I Fast overlap detection based on a textbook interval tree
algorithm.

I Extended algorithm for common case of sorted queries (does
not need to restart search for each query).

I Index is represented as an IntervalTree, which acts like any
other Ranges object (abstraction).

Restrict the problem to range of alignment

subtx <- restrict(tx, start(alignments),
end(alignments))

Hit A Hit B

Check that alignments and sub-transcripts are equal

sum(width(psetdiff(alignments, subtx))) == 0L &
sum(width(psetdiff(subtx, alignments))) == 0L

Hit A: Compatible Hit B: Incompatible

Summary plot with ggbio
chr16 chr16

ch
r1

6

0

500

1000

1500

2000

0

500

1000

1500

2000

norm
al

tum
or

C
ov

er
ag

e

score

500

1000

1500

novel

FALSE

TRUE

30064411 30081741

A
LD

O
A

sp
lic

in
g

m
od

el

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Example junction counting workflow

Steps

1. Load alignments from BAM
2. Tabulate junctions in alignments
3. Retrieve splice site sequences from reference assembly
4. Store intron locations, counts and annotations in a single

object that represents our summarized dataset
5. Obtain splice site sequences and annotate known splices

Assumption
The sequences were generated by a strand-specific protocol.

Existing tools
When doing this for real, see junctions() in GenomicAlignments,
which is much fancier and can infer the strand based on canonical
splice site motifs.

Loading alignments from a BAM file

ga <- readGAlignments("my.bam")
reads <- grglist(ga)

Tabulating junctions

Find the unique junctions

read.junctions <- psetdiff(range(reads), reads)
unique.junctions <- unique(read.junctions)

Count matches to unique junctions

counts <- countMatches(unique.junctions, read.junctions)

Storing summarized counts: SummarizedExperiment

The SummarizedExperiment object enables integration of feature
by sample measurements with feature and sample annotations.

assays <- list(junction_count=cbind(A=count))
se <- SummarizedExperiment(assays, unique.junctions)
se

class: SummarizedExperiment
dim: 20024 1
exptData(0):
assays(1): ’junction_count’
rownames: NULL
colnames(1): A
colData names(0):

Retrieving splice site sequences

Finding the 5’ splice sites

splice.sites <- resize(rowData(se), 2)

Getting and recording the sequences

library(BSgenome.Hsapiens.UCSC.hg19)
rowData(se)$splice.seqs <- getSeq(Hsapiens, splice.sites)

Example of storing arbitrary annotations on the rows/features, a
feature supported by most GenomicRanges containers.

Annotate for known splices

I Reference transcript annotations are stored as TranscriptDb
objects and distributed in individual packages.

I We can load the transcript structures as ranges and compare
their introns to those derived from the reads.

Deriving the known junctions

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
tx <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene)
known.junctions <- psetdiff(range(tx), tx)

Annotating junctions for matches to reference set

rowData(se)$known <- se %in% known.junctions

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

The ggbio package
Written by intern Tengfei Yin

I An R/Bioconductor package that extends the
Wilkinson/Wickham grammar for applications in genomics

I Integrated with IRanges and friends
I Operates on GenomicRanges data structures
I Leverages efficient range-based algorithms from IRanges
I Relies on file input routines for direct plotting, like those from

rtracklayer and Rsamtools

I Programming interface has two levels of abstraction:
autoplot Maps Bioconductor data structures to plots
grammar Mix and match to create custom plots

Architecture of ggbio

files

multiple data structures

gff, wig,
bed, ... bam vcf 2bit, FASTA

GRanges BamFile,
GappedAlignment

Summarized
Experiment

DNAStringSet

I/O packages in Bioconductor

geometric
object

statistical
transformation

scale
coordinate
system

faceting layout

chevron
arch
alignment
arrow
arrowrect
...

coverage
stepping
gene
mismatch
table
...

ranges linear
karyogram
circular

individual plot

arrangement (tracks)

grammar of graphics
with extension

autoplot

genome
truncate gaps

Automatic plotting of Bioc data structures

ir autoplot(ir) + theme_bw()

Computing Y layout with IRanges

y <- disjointBins(ir)

Deep integration with Bioconductor

class(bam)

class(p53)
tracks(bam, p53) + theme_bw()

Pretty pictures

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

●

4

6

8

10

12

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

X

5.0e+07 1.0e+08 1.5e+08 2.0e+08
Genomic Coordinates

seqReg

Exon

Intron

Other

0

5

10

15

C
ou

nt
s

read

A

C

G

T

T

A T T A A G A A A G T A C C G T G T G A C A T C A C A G G C T G G G A G C T T G A G A G

25235720 25235725 25235730 25235735 25235740 25235745 25235750 25235755

m
is

m
at

ch
sn

p
re

fe
re

nc
e

E
xp

re
ss

io
n

200

400

600

800

1000

group

GM12878

K562

0

hg19::chr2

G
en

e
M

od
el

uc002rau.2

uc010yjg.1

uc002rav.2

uc010yjh.1

uc002raw.2

10930000 10940000 10950000 10960000 10970000 10980000

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

0M 50
M

10
0M

15
0M

20
0M

0M

50
M

10
0M

15
0M

200M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M150M0M50M100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

0M

50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7

89
10

11

12

13
14

15
16

17

18

19
20

21 22

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Variant calling

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C A

CT
T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A
A

A
CHet

Hom-alt

Low
Frequency

Error?

POS REF ALT

2 T A
4 A G
8 C T

Variant calling use cases

DNA: variants
I Genetic associations with disease
I Mutations in cancer
I Characterizing heterogeneous cell populations

RNA: allele-specific expression

I Allelic imbalance, often differential
I Association with isoform usage (splicing QTLs)
I RNA editing (allele absent from genome)

VariantTools package

I Convenient interface for tallying mismatches and indels
I Provides several built-in variant filters
I Integrates:

I VRanges data structure from VariantAnnotation
I Tallying with bam_tally via gmapR
I FilterRules framework from IRanges

I By default, callVariants executes a simple algorithm for
finding general variants

VRanges

I The tally results are stored in a VRanges object
I One element/row per position + alt combination
I GRanges extension with fixed columns describing variants

ref ref allele
alt alt allele
totalDepth total read depth
refDepth ref allele read depth
altDepth alt allele read depth
sampleNames sample identifiers
softFilterMatrix FilterMatrix of filter results
hardFilters FilterRules used to subset object

I Inherits implementation of range algebra and overlap detection
I Tracks filter provenance

Pipeline overview

./fig/fig2A.pdf

Masking simple repeats

At least two
alt reads

At least 4%
alt read fractionC

al
l

P
o

st
 F

ilt
er

Max Count
in Neighborhood

O
u

tp
u

t

In
p

u
t

Variants

T
al

ly

Unique Alignments

Mapping
Quality > 13

Require > 23
Base Quality

Mask Simple
Repeats

Ignore Picard
Duplicates

QA

dbSNP positions
not considered;

mostly useful for WGS

Not overlapping
HP (> 6nt)

Overlapping
ends in same pair

are clipped

Binomial Likelihood
Ratio Test:

p(var) = 0.2 /
p(error) = 0.001

Masking simple repeats

Load the repeats

repeats <- rtracklayer::import("repeats.bed")
simple.classes <- c("Low_complexity", "Simple_repeat")
repeats <- subset(repeats, repClass %in% simple.classes)

GRanges with 15055 ranges and 1 metadata column:
seqnames ranges strand | repClass

<Rle> <IRanges> <Rle> | <factor>
[1] chr20 [64533, 64556] + | Low_complexity
[2] chr20 [67648, 67680] + | Simple_repeat
[3] chr20 [69506, 69535] + | Simple_repeat

Excluding variants over repeats

v <- v[!overlapsAny(v, repeats, ignore.strand=TRUE)]

Excluding variants in homopolymers

At least two
alt reads

At least 4%
alt read fractionC

al
l

P
o

st
 F

ilt
er

Max Count
in Neighborhood

O
u

tp
u

t

In
p

u
t

Variants

T
al

ly

Unique Alignments

Mapping
Quality > 13

Require > 23
Base Quality

Mask Simple
Repeats

Ignore Picard
Duplicates

QA

dbSNP positions
not considered;

mostly useful for WGS

Not overlapping
HP (> 6nt)

Overlapping
ends in same pair

are clipped

Binomial Likelihood
Ratio Test:

p(var) = 0.2 /
p(error) = 0.001

Excluding variants in homopolymers

Load the GMAP genome with gmapR

genome.sequence <- getSeq(genome)

Compute homopolymers (> 6nt)

chr1.rle <- Rle(charToRaw(genome.sequence[[1L]]))
chr1.hp <- subset(ranges(chr1.rle), width > 6L)

A C G G T T T T T T T T C C A
A C G
1 1 2

T
8 2

C A
1

Computing variant neighborhoods

At least two
alt reads

At least 4%
alt read fractionC

al
l

P
o

st
 F

ilt
er

Max Count
in Neighborhood

O
u

tp
u

t

In
p

u
t

Variants

T
al

ly

Unique Alignments

Mapping
Quality > 13

Require > 23
Base Quality

Mask Simple
Repeats

Ignore Picard
Duplicates

QA

dbSNP positions
not considered;

mostly useful for WGS

Not overlapping
HP (> 6nt)

Overlapping
ends in same pair

are clipped

Binomial Likelihood
Ratio Test:

p(var) = 0.2 /
p(error) = 0.001

Computing variant neighborhoods

Form neighborhoods from variants

neighborhoods <- v + flank.width

flank.width flank.width

V

Assign variants to neighborhoods

hits <- findOverlaps(v, neighborhoods)

Extreme coverage predicts aberrant frequencies

I Coverage in the
expected range
(40-120) shows
expected variant
frequencies

I High coverage (>120)
shows much lower
frequencies than
expected; mapping
error?

I Low coverage (<40)
also shows aberrant
frequencies

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

altDepth/totalDepth

D
en

si
ty

Coverage (1,40]

(40,120]

(120,Inf]

FDR associated with coverage extremes
findOverlaps(variants, self.chains)

self−chained unchained

0.0

0.1

0.2

0.3

0.4

[0
,1

0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

[0
,1

0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

Coverage Bin

F
D

R

Summary

I Ranges are a fundamental, integrative data type requiring
special data structures and algorithms.

I IRanges and friends provide R with an object-oriented
framework for representing and computing ranges.

I These packages support over 100 Bioc and CRAN packages,
including HTSeqGenie, our sequencing pipeline

I They are being applied beyond genomics, e.g., time series

Acknowledgements

Bioconductor
I Herve Pages
I Patrick Aboyoun
I Valerie Oberchain
I Martin Morgan
I Bioconductor community

ggbio

I Tengfei Yin
I Di Cook

isoseq

I Jinfeng Liu

Group

I Robert Gentleman
I Melanie Huntley
I Leonard Goldstein
I Yi Cao
I Jeremiah Degenhardt
I Gabe Becker

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Genomic data visualization

Variant calling

Summary

Summary

I The range integrates the different types of genomic data.
I IRanges and GenomicRanges define the fundamental

abstractions, data types and utilities for representing,
manipulating, comparing, and summarizing ranges.

I The data structures support storage of arbitrary metadata, and
are well integrated with reference annotation sources and
visualization packages.

I We applied these tools to the analysis of transcript expression
and junction counting in the context of RNA-seq data.

I Broader applications include: variant calling, ChIP-seq,
proteomics, and even general fields like time series analysis.

Your turn

I IRanges, GenomicRanges and friends are infrastructure and
thus primarily designed for use by software developers.

I The hope is that as use cases emerge, third party developers
(like you) create high-level, specialized packages that hide
most of the complexity of the underlying framework.

I Examples: ChIPpeakAnno, easyRnaSeq, VariantFiltering, . . .
more are welcome.

Acknowledgements

I Herve Pages
I Patrick Aboyoun
I Valerie Oberchain
I Martin Morgan
I Robert Gentleman

	Software for genomic ranges
	Isoform-specific expression
	Counting RNA-seq junctions
	Genomic data visualization
	Variant calling
	Summary

