

A Database of human biological pathways

Steve Jupe - sjupe@ebi.ac.uk

EMBL-EBI

e

The development of Reactome is supported by a grant from the US National Institutes of Health (P41 HG003751), EU grant LSHG-CT-2005-518254 "ENFIN", and the EBI Industry Programm

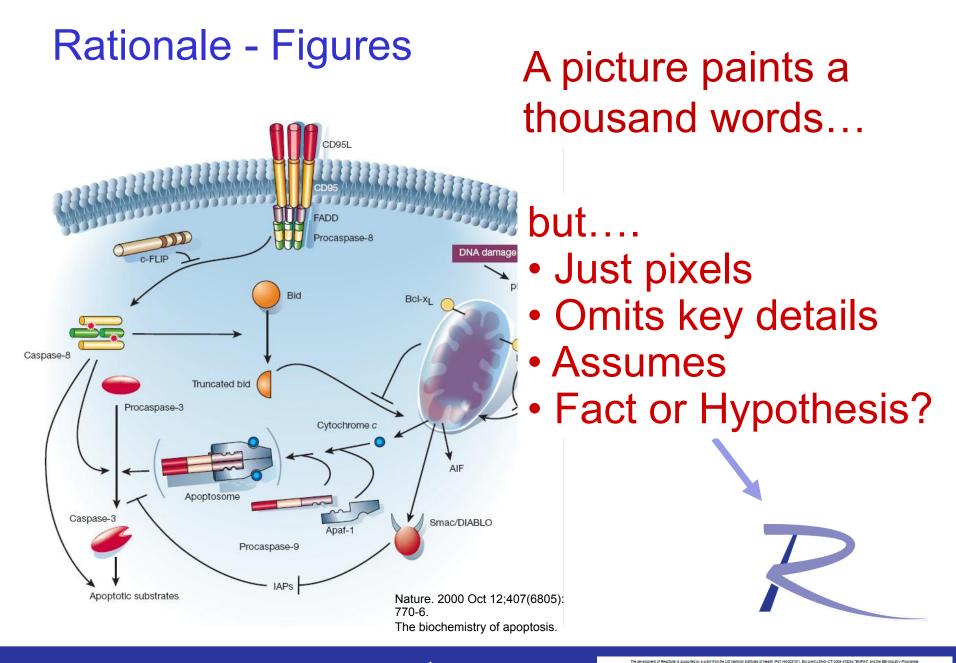
Ontario Institute for Cancer Research All rights reserved. NYU School of Medicine

Oct 2013

Rationale – Journal information

Nature 407(6805):770-6. The Biochemistry of Apoptosis.

"Caspase-8 is the key initiator caspase in the death-receptor pathway. Upon ligand binding, death receptors such as CD95 (Apo-1/Fas) aggregate and form membranebound signalling complexes (Box 3). These complexes then recruit, through adapter proteins, several molecules of procaspase-8, resulting in a high local concentration of zymogen. The induced proximity model posits that under these crowded conditions, the low intrinsic protease activity of procaspase-8 (ref. 20) is sufficient to allow the various proenzyme molecules to mutually cleave and activate each other (Box 2). A similar mechanism of action has been proposed to mediate the activation of several other caspases, including caspase-2 and the nematode caspase CED-3 (ref. 21)."


How can I access the pathway described here and reuse it?

2

Oct 2013

www.reactome.org

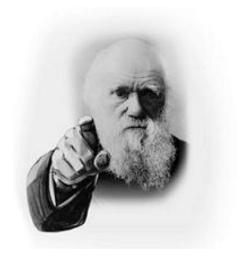
EMBL-EBI

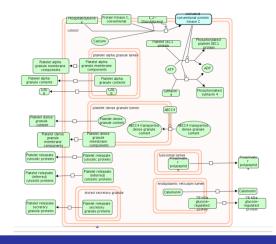
School of Medicine

Ontario Institute for Cancer Resear

www.reactome.org

Oct 2013


Reactome is...


Free, online, open-source curated database of pathways and reactions in human biology

Authored by expert biologists, maintained by Reactome editorial staff (curators)

Mapped to cellular compartment

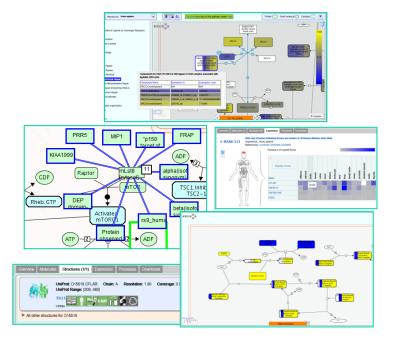
FMBI -FBI

School of Medicin

Reactome is...

🚗 🔌 ChEBI

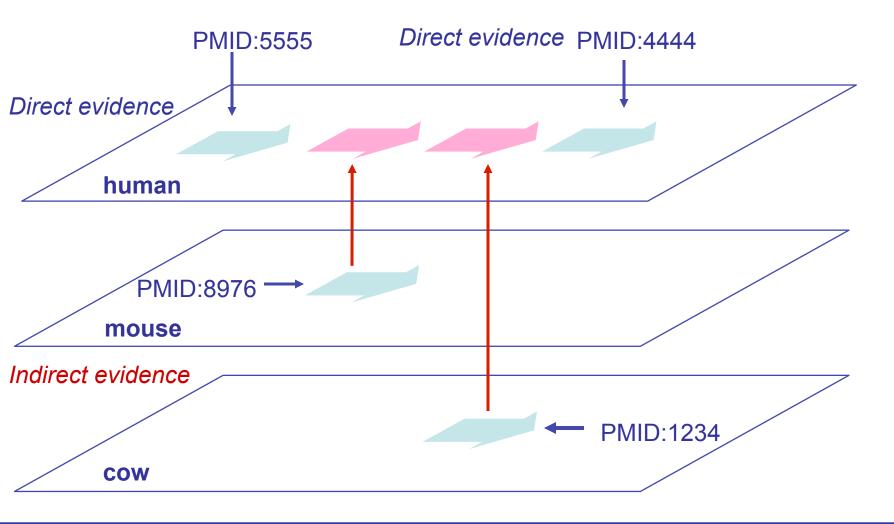
UniProt


Extensively cross-referenced Entrez Gene

Pub Med

Tools for data analysis – Pathway Analysis, Expression Overlay, Species Comparison, Biomart...

Used to infer orthologous events in 20 other species

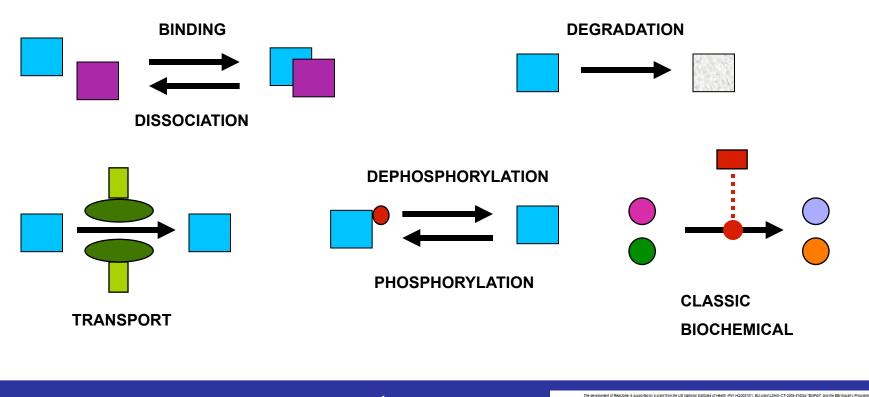

School of Medicine

Ontario Institute

EMBL-EBL

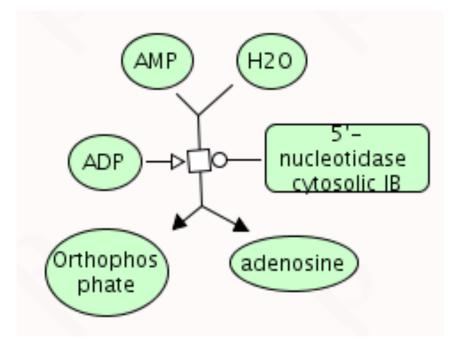
5

Using model organism data to build pathways – Inferred pathway events



Theory - Reactions

Pathway steps = the "units" of Reactome

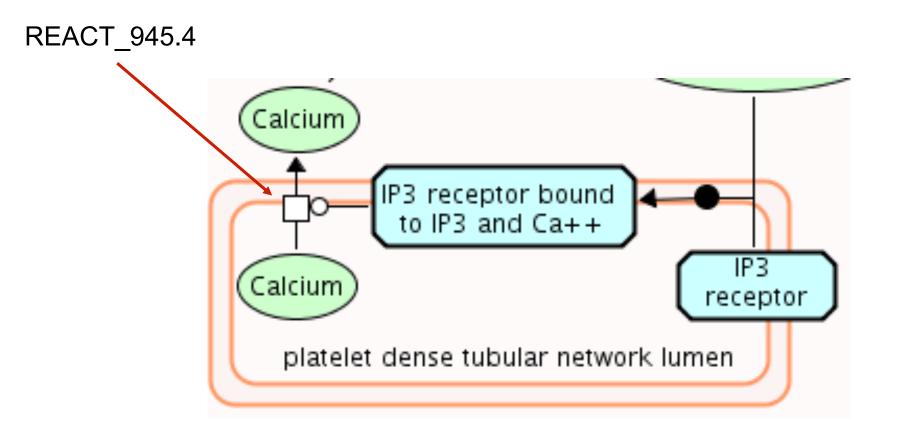

= events in biology

e

Reaction Example 1: Enzymatic

Oct 2013

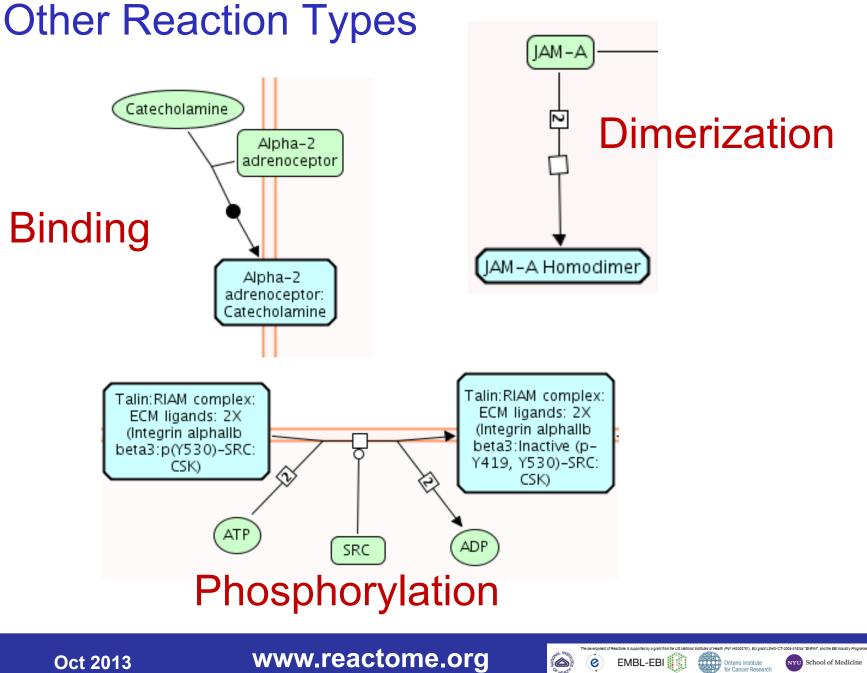
www.reactome.org



NYU School of Medicine

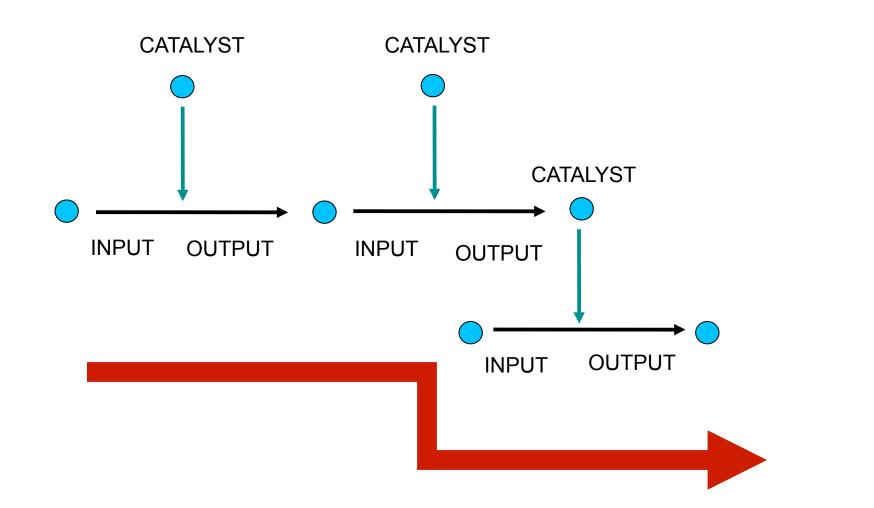
Reaction Example 2: Transport

Transport of Ca++ from platelet dense tubular system to cytoplasm



9

10

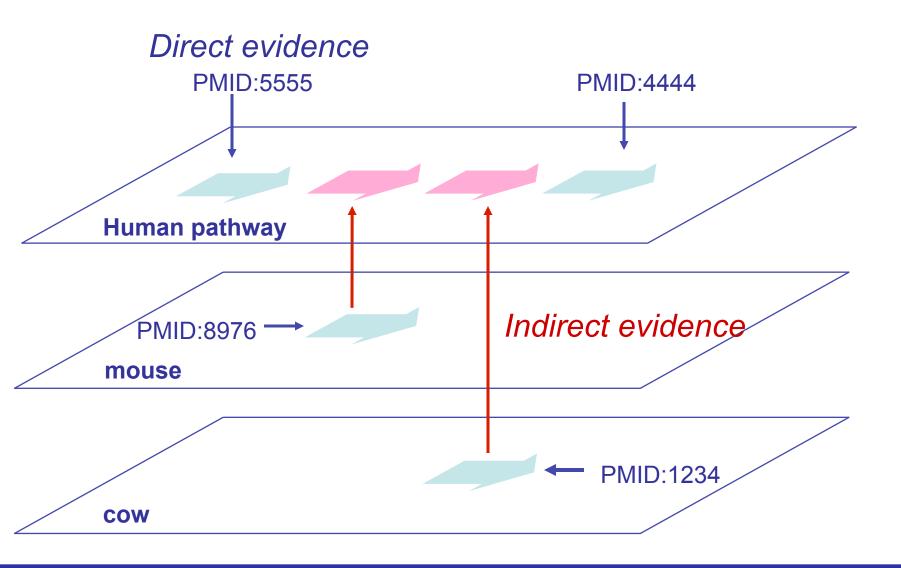

e

EMBL-EBI

School of Medicine

Ontario Institute for Cancer Researc All rights reserved

Reactions Connect into Pathways


Oct 2013

www.reactome.org

Evidence Tracking – Inferred Reactions

www.reactome.org

Ontario Institute for Cancer Resea All rights reserved

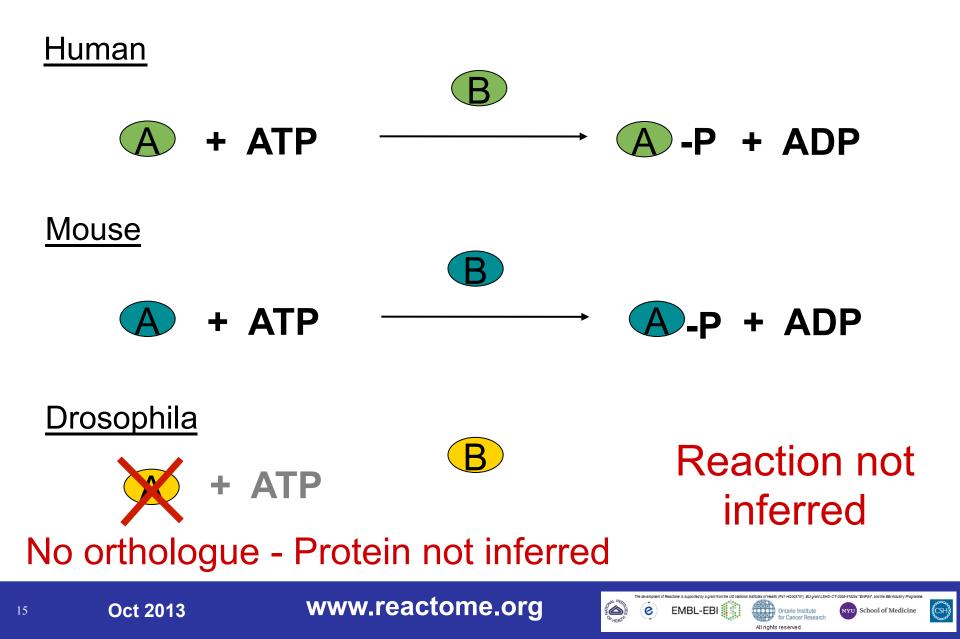
Data Expansion - Link-outs From Reactome

• GO

- Molecular Function
- Compartment
- Biological process
- KEGG, ChEBI small molecules
- UniProt proteins
- Sequence dbs Ensembl, OMIM, Entrez Gene, RefSeq, HapMap, UCSC, KEGG Gene
- PubMed references literature evidence for events

Species Selection

Switch Species:	Homo sapiens	-
Search results	Saccharomyces cerevisiae	
	Schizosaccharomyces pombe	
	Canis familiaris	
	Rattus norvegicus	
	Bos taurus	
	Drosophila melanogaster	
	Plasmodium falciparum	
	Staphylococcus aureus N315	
	Homo sapiens	
	Taeniopygia guttata	
	Sus scrofa	Ξ
	Dictyostelium discoideum	
	Arabidopsis thaliana	
	Mus musculus	
	Mycobacterium tuberculosis	
	Gallus gallus	
	Xenopus tropicalis	
	Oryza sativa	
	Caenorhabditis elegans	
	Escherichia coli	Ŧ



Data Expansion – Projecting to Other Species

Exportable Protein-Protein Interactions

Inferred from complexes and reactions (more on this later)

Interactions between proteins in the same complex, reaction, or adjoining reaction

Lists available from Downloads

See Readme document for more details

16

Coverage – Content, TOC

Topic Apoptosis [Homo sapiens] - Extrinsic Pathway for Apoptosis (DOI) - Intrinsic Pathway for Apoptosis (DOI) - Apoptotic execution phase - Regulation of Apoptosis Axon guidance [Homo sapiens] (DOI) Semaphorin interactions - NCAM signaling for neurite out-growth - Netrin-1 signaling - Signaling by Robo receptor - L1CAM interactions Biological oxidations [Homo sapiens] - Phase 1 - Functionalization of compounds - Phase II conjugation (DOI) Botulinum neurotoxicity [Homo sapiens, Clostridium botulinum] - Translocation of BoNT Light chain (DOI) - Proteolytic cleavage of SNARE complex proteins (DOI) Cell Cycle Checkpoints [Homo sapiens] G1/S DNA Damage Checkpoints (DOI) - G2/M Checkpoints (DOI) - Mitotic Spindle Checkpoint (DOI) Cell Cycle, Mitotic [Homo sapiens] - Mitotic G1-G1/S phases S Phase (DOI) Regulation of DNA replication (DOI) - Mitotic G2-G2/M phases Mitotic M-M/G1 phases - Regulation of mitotic cell cycle Cell junction organization [Homo sapiens] (DOI) - Cell-cell junction organization (DOI) Cell-extracellular matrix interactions - Type I hemidesmosome assembly Chromosome Maintenance [Homo sapiens] - Nucleosome assembly - Telomere Maintenance

And many more...

e

EMBL-EBI

Ontario Institute for Cancer Research All rights reserved. NYU School of Medicine

(CSH

Oct 2013

Planned Coverage – Editorial Calendar

Next Release - Ver 47 : December 2013 Reactome

Curator	Pathway Topic	Author	Reviewer
Karen Rothfels	Beta-catenin independent WNT signaling	Karen Rothfels	ТВА
Veronica Shamovsky	Cell surface interaction at the vascular wall	Veronica Shamovsky	ТВА
Steve Jupe	Chromatin modifying enzymes	ТВА	ТВА
Veronica Shamovsky	Complement cascade (Gallus)	Veronica Shamovsky	ТВА
Marija Milacic	Condensation of Prophase Chromosomes	Brenda Gallie	ТВА
Bruce May	Detoxification of reactive oxygen species	Bruce May	ТВА
Bijay Jassal	Diseases associated with glycosaminoglycan metabolism	Bijay Jassal	ТВА
Bijay Jassal	Diseases associated with glycosaminoglycan metabolism	Bijay Jassal	ТВА
Phani Garapati	Ephrin signalin	Phani Vijay Garapati	ТВА
Bruce May	Epigenetics	Bruce May	ТВА
Peter D'Eustachio	Glycogen storage diseases	Peter D'Eustachio	ТВА
Veronica Shamovsky	Heat shock response	Veronica Shamovsky	ТВА
Veronica Shamovsky	HSP90 protein folding machinery	Veronica Shamovsky	ТВА
Bruce May	Mitochondrial Biogenesis	Bruce May	ТВА
Marc Gillespie	Mitophagy	Charleen T Chu	ТВА
Marija Milacic	Nuclear Envelope Breakdown: Clearance of Nuclear Envelope from Chromatin - revision	Marija Milacic	Matyas Gorjanacz
Marija Milacic	Nuclear Envelope Reformation-revision	Marija Milacic	Matyas Gorjanacz
Marija Milacic	Cellular Senescence-revision	Marija Milacic	Shamith Samarajiwa
Bruce May	Organelle Biogenesis	Bruce May	ТВА
Bijay Jassal	Sialic acid metabolism	Bijay Jassal	ТВА
Bruce May	SUMO E3 ligases sumoylate target proteins	Bruce May	ТВА
Karen Rothfels	TCF-dependent signaling in response to WNT	Karen Rothfels	ТВА
Bruce May	Transcriptional Regulation of Pluripotent Stem Cell	Bruce May	ТВА
Phani Garapati	VEGFA-VEGFR2 signaling	Phani Vijay Garapati	ТВА
Karen Rothfels	WNT in cancer	Karen Rothfels	ТВА

The development of Reactome is supported by a grant from the US National Institutes of Health (P41 HG003731), EU grant LSHG-CT-2005-518254 "ENFIN", and the EBI Industry Programme

Ontario Institute for Cancer Research All rights reserved. School of Medicine

ALENCH

e

EMBL-EBI

Oct 2013

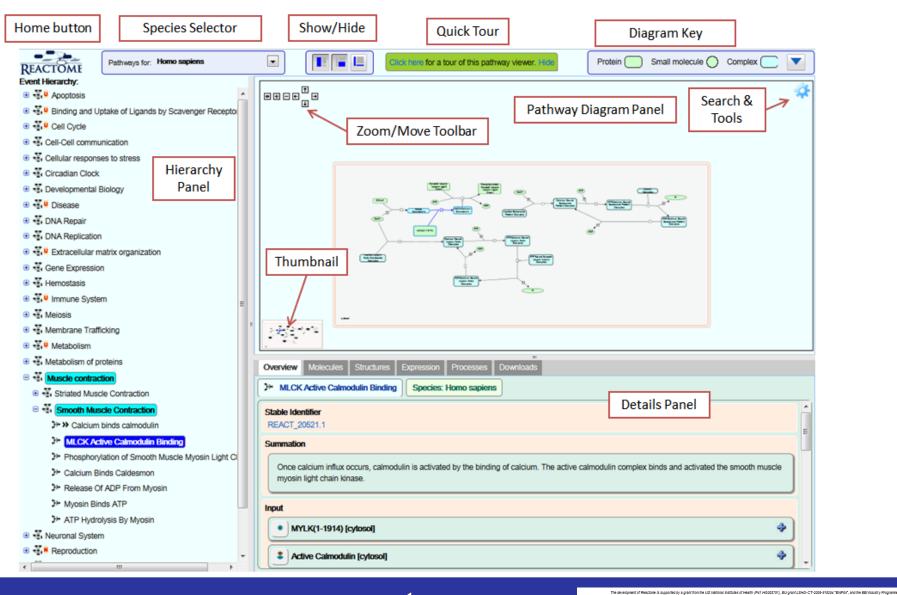
Reactome Tools

- Interactive Pathway Browser
- Analysis
 - Pathway Mapping
 - Over-representation
 - Expression overlay
- Molecular Interaction overlay
- Biomart

Front Page

http://www.reactome.org

20


www.reactome.org

The Pathway Browser

www.reactome.org

e

EMBL-EBI

Ontario Institute

All rights reserved.

NYU School of Medicine

Pathway Hierarchy Panel

-

REACTOME

Pathways for: Horno sapiens

Event Hierarchy:

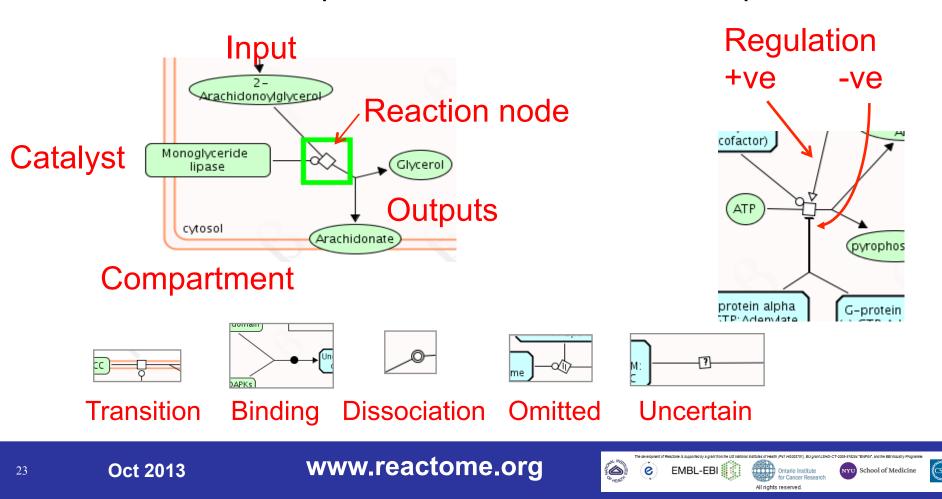
- 🗉 🗳 Apoptosis
- 🖲 🐺 Binding and Uptake of Ligands by Scavenger Receptors
- 🖲 📲 🛛 Cell Cycle
- Cell-Cell communication
- Cellular responses to stress
- 🗉 🐳 Circadian Clock
- 🗉 🐳 Developmental Biology
- 🗉 🕌 🖳 Disease
- 🗉 😤 DNA Repair
- 🗉 🐺 DNA Replication
- Extracellular matrix organization
- 🗉 🐺 Gene Expression
- 🖲 🎽 Hemostasis
- 🗉 🐺 Immune System
- 🖲 🕌 Meiosis
- 🗉 🐳 Membrane Trafficking
- 🖲 🐇 Metabolism
- Metabolism of proteins
- 🗉 🐳 Muscle contraction
- 🖲 🐺 Neuronal System
- Reproduction
- Signal Transduction
- SUMOylation

PathwayReactionBlack-box

e

EMBL-EBI

The development of Reactome is supported by a grant from the US National Institutes of Health (P41 HG003751). EU grant LSHG-CT-2005-518254 "ENFIN", and the EBI Industry Programme

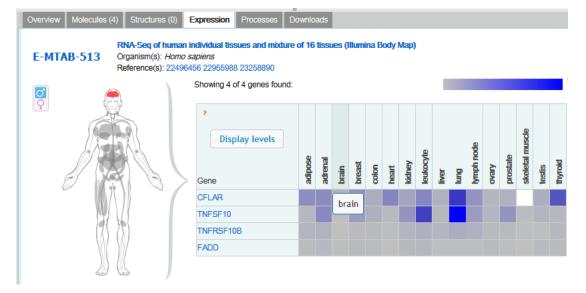

Ontario Institute

for Cancer Researc

NYU School of Medicine

The Pathway Browser - Pathway Diagrams

Boxes are proteins, protein sets, mixed sets or complexes. Ovals are small molecules (or sets of) Green boxes are proteins or sets, blue are complexes.


The Details Panel

Overview Molecules Structures Expression Processes Downloads	
Image: Species: Homo sapiens	
Stable Identifier	- A
REACT_1721.2	
Summation	
The trimeric complex of TRAIL and TRAIL receptor-2 (TRAIL:TRAIL receptor-2) binds FADD (Sprick et al. 2000).	
Input	
TRAIL receptor-2:TRAIL Trimer [plasma membrane]	+
2 x FADD [cytosol]	4
Output	
TRAIL:TRAIL receptor-2:FADD [plasma membrane]	\$
Preceding Event(s)	
TRAIL Binds TRAIL-Receptor2 [Homo sapiens]	\$
Following Event(s)	
TRAIL:TRAIL-Receptor2 Trimer.FADD complex binds Caspase-10 [Homo sapiens]	4
TRAIL:TRAIL-Receptor2 Trimer.FADD complex binds Caspase-8 [Homo sapiens]	4
Computationally inferred to	
Select a species to go to	
Negatively regulated by	
CFLAR(1-376) [cytosol]	4

€CSH

Analysis – identifier list

Submit your data for analysis

Takes gene expression data (and also numerical proteomics data) and shows how expression levels affect reactions and pathways in living organisms. May be time-consuming, depending on the number of identifiers you are submitting; less than 5000: a few seconds, 5000 - 10000: a few minutes, 10000 or more: 10 minutes or longer. Your data should be formatted as a tab-delimited file, where the first column contains identifiers and subsequent columns contain numerical expression data. You may paste your data into the supplied text area, or you can also upload it from a file. Click on the "Analyse" button to perform this analysis.

Browse No file selected.	Clear Load example data:	Protein UniProt ID list	•	
000139				*
000186				
000187				
000204				
000217				
000231				
000232				
000233				
000254				
000267				
000268				_
000273				+
000303				
Analyse				

26

Overrepresentation

Submit analysis data Analysis results Identifier results

Analysis results, per pathway

Select format to download this table: Microsoft Xcel (TSV)

This table provides an overview of your expression data in a pathway context. For each Reactome pathway, the total number of proteins is shown, plus the number of genes/proteins in your dataset that match. By clicking on a pathway name, you will be taken to an interactive graphical representation of the pathway, where your expression levels are represented as coloration of proteins.

Developed

P-vals

Select format to download this table. Microsoft Xcel (TSV)	 Download 	d		
Pathway 🔽	Species 🖡	IDs in pathway (%) 🖡	Enrichment (pval) 🖡	FDR 🔽
Not assigned	Not known	76 (0%)		
Apoptosis	Homo sapiens	73 (48%)	1.21E-05	8.45E-05
Binding and Uptake of Ligands by Scaveng	Homo sapiens	5 (2%)	0.5	0.5
Cell Cycle	Homo sapiens	162 (36%)	6.90E-10	1.52E-08
Cell-Cell communication	Homo sapiens	18 (14%)	6.94E-02	6.94E-02
Cellular responses to stress	Homo sapiens	23 (15%)	0.4	0.4
Circadian Clock	<u>Homo sapiens</u>	4 (11%)	0.2	0.2
Developmental Biology	Homo sapiens	62 (17%)	1.10E-02	2.21E-02
Disease	Homo sapiens	232 (22%)	4.96E-03	1.49E-02
DNA Repair	Homo sapiens	58 (54%)	5.07E-02	5.88E-02
DNA Replication	Homo sapiens	57 (56%)	1.03E-06	1.13E-05
Extracellular matrix organization	Homo sapiens	53 (21%)	0.2	0.2
Gene Expression	Homo sapiens	229 (32%)	5.88E-02	5.88E-02
Hemostasis	<u>Homo sapiens</u>	116 (27%)	7.01E-04	3.51E-03
Immune System	Homo sapiens	233 (19%)	3.05E-03	1.22E-02
<u>Meiosis</u>	Homo sapiens	18 (31%)	3.29E-02	5.88E-02
Membrane Trafficking	Homo sapiens	13 (9%)	0.5	0.5
Metabolism	Homo sapiens	353 (24%)	7.11E-03	2.13E-02
Metabolism of proteins	Homo sapiens	64 (12%)	0.9	0.9
Muscle contraction	Homo sapiens	1 (1%)	0.2	0.2
Neuronal System	<u>Homo sapiens</u>	22 (8%)	0.6	0.6
Reproduction	Homo sapiens	0 (0%)		
Signal Transduction	Homo sapiens	226 (13%)	3.19E-02	5.88E-02
SUMOylation	<u>Homo sapiens</u>	0 (0%)		
Transmembrane transport of small molecul	Homo sapiens	43 (8%)	0.5	0.5

25 rows

www.reactome.org

All rights reserved

Expression overlay I

REACTOME A CURATED PATHWAY DATABASE	
About Content Documentation Tools Community Download	Contact e.g. 095631, NTN1, signaling Search
Submit analysis data Analysis results Identifier results Summary results	

Submit your data for analysis

Takes gene expression data (and also numerical proteomics data) and shows how expression levels affect reactions and pathways in living organisms. May be time-consuming, depending on the number of identifiers you are submitting; less than 5000: a few seconds, 5000 - 10000: a few minutes, 10000 or more: 10 minutes or longer. Your data should be formatted as a tab-delimited file, where the first column contains identifiers and subsequent columns contain numerical expression data. You may paste your data into the supplied text area, or you can also upload it from a file. Click on the "Analyse" button to perform this analysis.

Browse No fi	le selected.	Clear Load e	xample data: Expre	ession data	•	
#Probeset	10h_control	10h 14h	18h 24h			
1053 at 8.0400	7.147	358 6.70	5705 6.79	94622 7.47	5157	
1729 at 6.8696	6.991	04 7.129922	7.112222	7.04721		
1861 at 6.4379	99 6.620	092 6.203	17 6.407735	5.717815		
200000 s at	9.381569	9.710802	9.874874	9.934639	9.495911	
200002 at	12.555275	12.511045	12.564419	12.538642	12.439174	
200003 s at	12.401259	12.054083	12.275169	12.206342	12.015476	
200005 at	9.609852	9.099299	9.73072 9.53	30097 9.19	4303	
200012 x at	12.486269	12.402275	12.302666	12.256543	12.282444	
200014 s at	10.371458	9.548578	9.978313	9.871472	8.753136	
200016 x at	12.110468	11.913288	11.938524	11.899243	11.458105	
200022 at	12.205038	11.927471	12.064725	12.031422	11.932256	
200023 s at	10.377248	9,902753	9.990862	10.248412	9.513486	

Analyse

The development of Reactome is supported by a grant from the US National Institutes of Health (P41 HG003751), EU grant LSHG-CT-2008-518254 "ENFIN", and the EBI Industry Programme

Ontario Institute for Cancer Research All rights reserved. NYU School of Medicine

EMBL-EBI

e

28

Expression overlay II

Submit analysis data

Identifier results Summary results

Analysis results, per pathway

Select format to download this table: Microsoft Xcel (TSV)

Oct 2013

Analysis results

This table provides an overview of your expression data in a pathway context. For each Reactome pathway, the total number of proteins is shown, plus the number of genes/proteins in your dataset that match. By clicking on a pathway name, you will be taken to an interactive graphical representation of the pathway, where your expression levels are represented as coloration of proteins.

Download

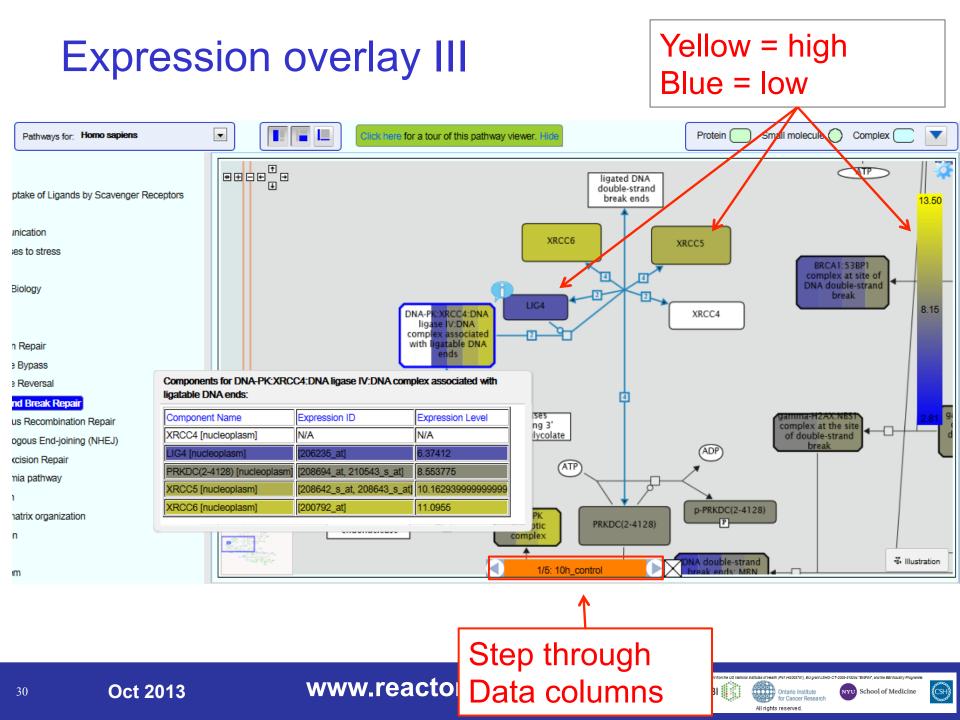
Microsoft Acel	(ISV) •	Download					
Pathway 🖡	Species 🗤	IDs in pathway (%) _{▼▲}	10h_control VA	10h 🔻	. 14h ▼ ▲	18h 🖡	24h 🗤
Not assigned	Not known	21	7.3	6.8	7.0	6.9	6.5
Apoptosis	Homo sapiens	71 (48%)	7.9	7.7	7.8	7.7	7.4
Binding and Uptake of Ligands by Scaveng	Homo sapiens	6 (3%)	4.8	5.2	5.2	5.0	5.4
Cell Cycle	Homo sapiens	114 (26%)	8.4	7.8	8.0	8.0	7.5
Cell-Cell communication	Homo sapiens	4 (3%)	7.8	7.8	7.9	7.7	7.8
Cellular responses to stress	Homo sapiens	3 (11%)	8.2	7.5	7.8	7.7	7.2
Circadian Clock	Homo sapiens	1 (2%)	10.3	10.1	10.1	10.2	9.3
Developmental Biology	Homo sapiens	19 (5%)	6.5	6.5	6.6	6.5	6.6
Disease	Homo sapiens	165 (18%)	9.2	8.9	9.0	9.0	8.7
DNA Repair	Homo sapiens	74 (69%)	7.6	7.1	7.2	7.3	6.9
DNA Replication	Homo sapiens	77 (77%)	8.8	8.1	8.3	8.3	7.7
Extracellular matrix organization	Homo sapiens	16 (7%)	5.8	6.0	6.0	6.0	6.1
Gene Expression	Homo sapiens	272 (39%)	9.0	8.6	8.8	8.8	8.4
<u>Hemostasis</u>	Homo sapiens	76 (17%)	6.0	6.0	6.0	6.0	6.1
Immune System	Homo sapiens	95 (8%)	8.0	7.7	7.8	7.8	7.5
<u>Meiosis</u>	Homo sapiens	14 (24%)	7.4	6.9	6.9	7.0	6.6
Membrane Trafficking	Homo sapiens	7 (5%)	7.6	7.4	7.3	7.3	7.0
Metabolism	Homo sapiens	292 (20%)	7.7	7.5	7.6	7.6	7.4
Metabolism of proteins	Homo sapiens	81 (15%)	10.3	10.1	10.3	10.3	10.0
Muscle contraction							
Neuronal System	Homo sapiens	10 (3%)	6.1	5.9	6.0	5.9	5.9
Reproduction	Homo sapiens	1 (4%)	9.7	8.9	9.2	9.0	8.8
Signal Transduction	Homo sapiens	116 (6%)	7.2	7.1	7.1	7.1	6.9
SUMOylation							
Transmembrane transport of small molecul	Homo sapiens	16 (3%)	6.2	6.2	6.2	6.1	6.4

25 rows

www.reactome.org

The development of Reactone is supported by a grant from the US National Institutes of Health (P41 HG003751), EU grant LSHG-CT-2005-518254 "ENFIN", and the EBI Industry Programme.

Ontario Institute


for Cancer Research All rights reserved. NYU School of Medicine

€CSH

ė

EMBL-EBI

A HENDY

Species Comparison I

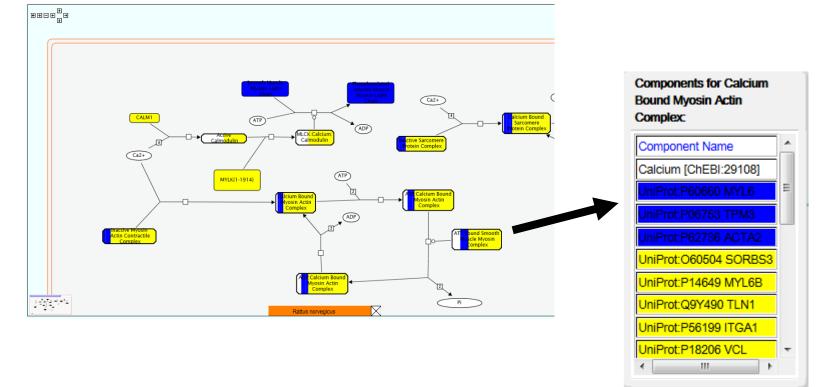
Compare species results Compare species

Compare pathways between species

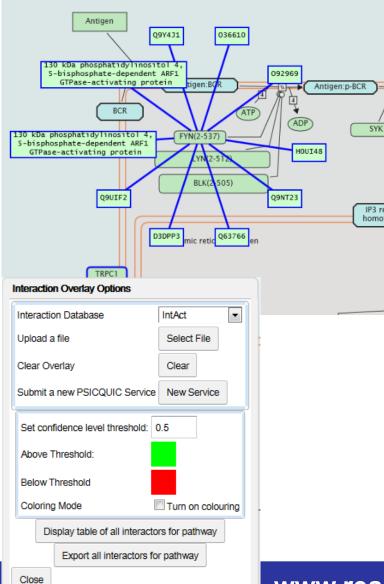
This tool allows you to compare pathways between human and any of the other species inferred from Reactome by orthology. Use the species selector to choose the other species; the table which appears will provide you with a summary of the differences for all pathways.

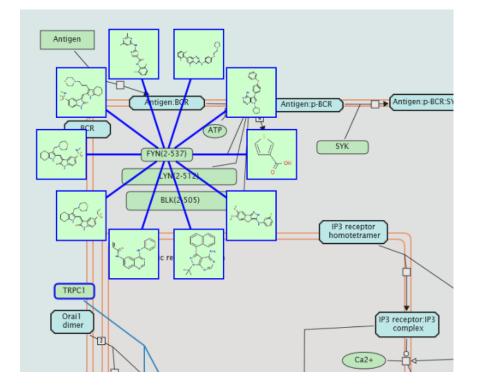
compare all human pathway	s with: Arabidopsis	thaliana	-	Apply		
	Arabidopsis	thaliana				
	Bos taurus					
	Caenorhabo	litis elegans				
	Canis famili	aris				
	Chlamydia t	rachomatis				
	Clostridium	botulinum				
	Danio rerio					
		m discoideum	Ξ			
		melanogaster				
	Escherichia					
	Gallus gallu					
		nunodeficiency virus 1				
	Influenza A					
	Mus muscu		-			
		ium tuberculosis				
		eningitidis serogroup B				
	Oryza sativa					
		n falciparum				
	Rattus norve					
About	Content Saccharom	yces cerevisiae	Ŧ	Tools	Community	f 🕑 You
About Reactome	Table of Contents	User Guide		Pathway Browser	Reactome Community	Tube
News	DOIs	Data Model		Analyze Data	Events Calendar	
Reactome Team	Data Schema	Orthology Prediction		Pathway Overview	Training	
Scientific Advisory Board	Editorial Calendar	Object/Relational Ma	ppin		Reactome Publications	
Other Reactomes	Statistics	Wiki		Reactome FI Network	Papers Citing Reactome	
License Agreement		Linking to Reactome		Advanced Search	Resource Guide	
Creative Commons License	2			Small Molecule Search	Mailing List	
Reactome Disclaimer				BioMart		
					Download	

www.reactome.org

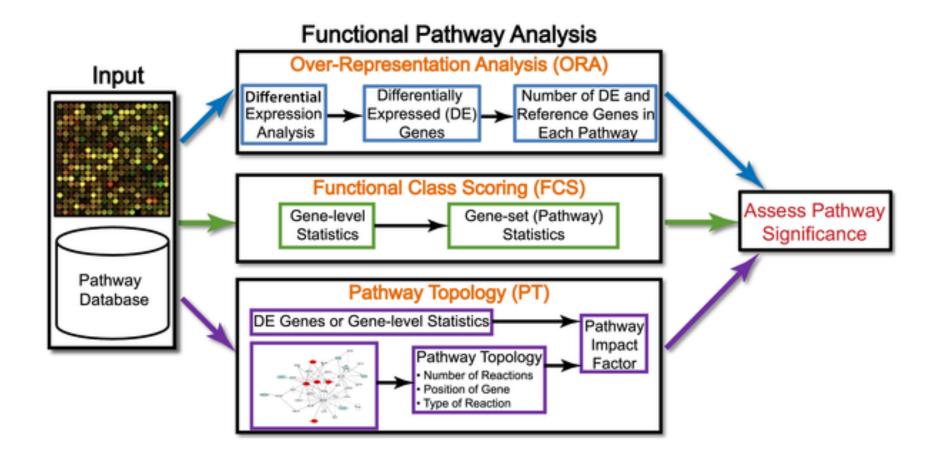


All rights reserved


Species Comparison II


Yellow = human/rat Blue = human only No colour = no data

Molecular Interaction Overlay


www.reactome.org

Overview of existing pathway analysis methods

www.reactome.org

60000

Ontario Institute for Cancer Researc All rights reserved

CSH

NYU School of Medicine

Functional analysis methods - ORA

- Over-representation analysis (ORA) statistically evaluate the fraction of genes in a particular pathway found among the set of genes showing changes in expression
- Limitations:
 - The statistical test used considers the number of genes alone and ignores any value associated with them, such as probe intensities
 - Each gene is treated equally and genes are considered independent
 - Only the most significant genes are used, the others are discarded
 - Pathways are considered independent
- Example: GO tools

Functional analysis methods - FCS

- Functional class scoring (FCS) based on the hypothesis that, although large changes in individual genes can have significant affects on pathways, weaker but coordinated changes in sets of functionally coordinated genes can also have significant effects.
- Pathway level statistics
- Limitations:
 - Pathways are considered independent
 - Changes in gene expressions are used to rank genes but then discarded from further analysis
- Example: GSEA (<u>ttp://www.broadinstitute.org/gsea/</u>), GSEABase (Bioconductor)

Functional analysis methods - PT

- Pathway topology (PT)-based approaches same as FCS but additionally using pathway topology to compute gene-level statistics. Include information about gene products that interact in a given pathway, how they interact and where they interact.
- Limitations:
 - Pathway topology is dependent on the type of cell due to cellspecific gene expression profiles and conditions being studied
 - Inability to model dynamic states
 - Inability to consider interactions between pathways
- Examples: SPIA (Bioconductor package)