## Differential expression analysis Alternative exon usage



## Wolfgang Huber EMBL

31 October 2013 - Recife

## European Molecular Biology Laboratory

 (EMBL)

European Intergovernmental Research Organisation

- 20 Member States

Founded in 1974

- Sites in Heidelberg (D), Cambridge (GB), Roma (I), Grenoble (F), Hamburg (D)
- ca. 1400 staff (>1100 scientists) representing more than 60 nationalities



## EMBL's five missions

Basic research

Development of new technologies and instruments
Technology transfer
Services to the member states
Advanced training

## What can you do at EMBL?

Biology
Chemistry
PhysicsMathematics
Informatics
Engineeringwww.embl.org/phdprogramme www.embl.org/postdocs www.embl.org/jobs


## Progress in science is driven by technology

Sequencing - DNA-Seq, RNASeq, ChiP-Seq, HiC
Microscopy \& remote sensing- molecular interactions and life-cycles in single, live cells
Large scale perturbation libraries - RNAi, drugs

We work on the methods in statistical computing, integrative bioinformatics and mathematical modelling to turn these data into biology.

## Research areas

Gene expression

- Statistics - differential expression; alternative exon usage
- 3D structure of DNA (HiC \& Co.)
- Single-cell transcriptomics and noise

Simon Anders, Aleksandra Pekoswka, Alejandro Reyes, Jan Swedlow; Tibor Pakozdi
collaborations with L. Steinmetz, P. Bertone, E. Furlong, T. Hiiragi
Cancer Genomics \& Precision Oncology

- Somatic mutation detection (incl subclonal)
- Phylogeny inference

Julian Gehring, Paul Pyl
collaborations with C.v.Kalle/M.Schmid, H. Glimm (NCT); J. Korbel
Genetic Interactions, pharmacogenetics (reverse genetics)

- Large-scale combinatorial RNAi \& automated microscopy phenotyping
- Cancer mutations \& drugs

Joseph Barry, Bernd Fischer, Felix Klein, Malgorzata Oles collaborations with M.Boutros (DKFZ), T.Zenz (NCT), M. Knop (Uni)

Basics of statistics

- Tools \& infrastructure for software 'publication'
- Teaching

Bernd Klaus, Andrzej Oles
collaborations M.Morgan (FHCRC), R.Gentleman (Genentech)

## Two applications of RNA-Seq

- Discovery
- find new transcripts
- find transcript boundaries
- find splice junctions
- Comparison

Given samples from different experimental conditions, find effects of the treatment on

- gene expression strengths
- isoform abundance ratios, splice patterns, transcript boundaries


## Count data in HTS

| Gene | GliNS1 | G144 | G166 | G179 | CB541 | CB660 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13CDNA73 | 4 | 0 | 6 | 1 | 0 | 5 |
| A2BP1 | 19 | 18 | 20 | 7 | 1 | 8 |
| A2M | 2724 | 2209 | 13 | 49 | 193 | 548 |
| A4GALT | 0 | 0 | 48 | 0 | 0 | 0 |
| AAAS | 57 | 29 | 224 | 49 | 202 | 92 |
| AACS | 1904 | 1294 | 5073 | 5365 | 3737 | 3511 |
| AADACL1 | 3 | 13 | 239 | 683 | 158 | 40 |
| [...] |  |  |  |  |  |  |

- RNA-Seq
- ChIP-Seq
- HiC
- Barcode-Seq
- Peptides in mass spec



## Counting rules

- Count reads, not bases
- Discard a read if
- it cannot be uniquely mapped
- its alignment overlaps with several genes
- the alignment quality score is bad
- (for paired-end reads) the mates do not map to the same
 gene

two biological replicates
treatment vs control


## The Poisson distribution is used for counting processes



## Analysis method: ANOVA

$N_{i j} \sim \operatorname{Poisson}\left(\mu_{i j}\right)$

$$
\log \mu_{i j}=s_{j}+\sum_{k} \beta_{i k} x_{k j}
$$

$\mu_{i j}$ expected count of region $i$ in sample $j$
$\mathrm{s}_{j} \quad$ library size factor
$x_{k j}$ design matrix
$\boldsymbol{\beta}_{i k}$ (differential) effect for region $\boldsymbol{i}$

Noise part

Systematic part

For Poisson-distributed data, the variance is equal to the mean.

No need to estimate the variance. This is convenient.
E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010), ...


## So we need a better way

data are discrete, positive, skewed
= no (log-)normal model
small numbers of replicates
$\Rightarrow$ no rank based or permutation methods
$\Rightarrow$ want to use parametric stochastic model to infer tail behaviour (approximately) from low-order moments (mean, variance)
large dynamic range (0 ... 10 ${ }^{5}$ )
$\Rightarrow$ heteroskedasticity matters

## The negative-binomial distribution

$$
\mathrm{P}(K=k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, \quad r \in \mathbb{R}^{+}, p \in[0,1]
$$



Alternative parameterisation

$$
\begin{aligned}
\alpha & =\frac{1}{r} \\
\mu & =\frac{p r}{1-p}
\end{aligned}
$$

Moments
mean $=\mu$
variance $=\mu+\alpha \mu^{2}$

Bioconductor package DESeq, since 2010

## The NB distribution models a Poisson process whose rate is itself randomly varying



Biological sample to sample variability 「


Poisson counting statistics $\Lambda$


Overall distribution NB

## Two component noise model

## Small counts

Sampling noise dominant

Improve power: deeper coverage


## Large counts

Biological noise dominant

Improve power: more biol.
replicates

## Generalised linear model of the negative binomial family

$$
N_{i j} \sim \mathrm{NB}\left(\mu_{i j}, \alpha_{i j}\right)
$$

Noise part

$$
\log \mu_{i j}=s_{j}+\sum_{l} \beta_{i k} x_{k j} \underset{\substack{\text { Systematic } \\ \text { part }}}{\text { St }}
$$

$\mu_{i j}$ expected count of gene $i$ in sample $j$
$\mathrm{s}_{j} \quad$ library size effect
$x_{k j}$ design matrix
$\boldsymbol{\beta}_{i k}$ (differential) expression effects for gene $\boldsymbol{i}$

## What is a generalized linear model?

$$
Y \sim D(m, s)
$$

A GLM consists of three elements:

1. A probability distribution $D$ (from the exponential family), with mean $E[Y]=m$ and dispersion $s$
2. A linear predictor $\eta=X \beta$
3. A link function $g$ such that $\boldsymbol{g}(\boldsymbol{m})=\boldsymbol{\eta}$.

Ordinary linear model: $g=$ identity, $D=$ Normal
DESeq(2), edgeR, ...: $g=\log , D=$ Negative Binomial

## design with a blocking factor

| Sample | treated | sex |
| :--- | :--- | :--- |
| S1 | no | male |
| S2 | no | male |
| S3 | no | male |
| S4 | no | female |
| S5 | no | female |
| S6 | yes | male |
| S7 | yes | male |
| S8 | yes | female |
| S9 | yes | female |
| S10 | yes | female |

## GLM with blocking factor

$$
K_{i j} \sim N B\left(s_{j} \mu_{i j}, \alpha_{i j}\right) \quad \text { i: genes } \quad j: \text { samples }
$$

full model for gene $\boldsymbol{i}$ :

$$
\log \mu_{i j}=\beta_{i}^{0}+\beta_{i}^{\mathrm{S}} x_{j}^{\mathrm{S}}+\beta_{i}^{\mathrm{T}} x_{j}^{\mathrm{T}}
$$

reduced model for gene $\boldsymbol{i}$ :

$$
\log \mu_{i j}=\beta_{i}^{0}+\beta_{i}^{\mathrm{S}} x_{j}^{\mathrm{S}}
$$

## GLMs: Interaction

$$
K_{i j} \sim N B\left(s_{j} \mu_{i j}, \alpha_{i j}\right)
$$

full model for gene $i$ :

$$
\log \mu_{i j}=\beta_{i}^{0}+\beta_{i}^{\mathrm{S}} x_{j}^{\mathrm{S}}+\beta_{i}^{\mathrm{T}} x_{j}^{\mathrm{T}}+\beta_{i}^{\mathrm{I}} x_{j}^{\mathrm{S}} x_{j}^{\mathrm{T}}
$$

reduced model for gene $\boldsymbol{i}$ :

$$
\log \mu_{i j}=\beta_{i}^{0}+\beta_{i}^{\mathrm{S}} x_{j}^{\mathrm{S}}+\beta_{i}^{\mathrm{T}} x_{j}^{\mathrm{T}}
$$

## GLMs: paired designs

- Often, samples are paired (e.g., a tumour and a healthy-tissue sample from the same patient)
- Then, using pair identity as blocking factor improves power.
full model:

$$
\log \mu_{i j l}=\beta_{i}^{0}+ \begin{cases}0 & \text { for } l=1 \text { (healthy) } \\ \beta_{i}^{\mathrm{T}} & \text { for } l=2 \text { (tumour) }\end{cases}
$$

reduced model:

$$
\log \mu_{i j}=\beta_{i}^{0}
$$

$i$ gene
$j$ subject
$l$ tissue state

## Generalized linear models

Simple design:
Two groups, e.g. control and treatment
Common complex designs:

- Designs with blocking factors
- Factorial designs
- Designs with interactions
- Paired designs


## GLMs: Dual-assay designs (e.g.: CLIP-Seq + RNA-Seq)

How does affinity of an RNA-binding protein to mRNA change under a (drug, RNAi) treatment?

For each sample, we are interested in the ratio of CLIP-Seq to RNA-Seq reads. How is it affected by treatment?
full model:
count ~ assayType + treatment + assayType : treatment reduced model:
count ~ assayType + treatment

Zarnack et al., Cell 2013


## Why we discard non-unique alignments

gene $A$

control condition
treatment condition


## Modelling Variance

To assess the variability in the data from one gene, we have

- the observed standard deviation for that gene
- that of all the other genes
$\Rightarrow$ ridge (Tikhonov) regularisation, empirical Bayes



## Dispersion estimation: shrinkage



## Beta (estimated effects): shrinkage



The mechanics: empirical Bayes shrinkage of gene-wise dispersion estimates and of (non-intercept) $\beta$ s

$$
\begin{gathered}
\hat{\alpha}_{\mathrm{MLE}}=\underset{\alpha}{\operatorname{argmax}} \ell(\alpha \mid y, \hat{\mu}) \\
\mathrm{CR}(\alpha)=-\frac{1}{2} \log \left(\operatorname{det}\left(X^{t} W X\right)\right) \\
\hat{\alpha}_{\mathrm{CR}}=\underset{\alpha}{\operatorname{argmax}}(\ell(\alpha \mid y, \hat{\mu})+\mathrm{CR}(\alpha))
\end{gathered}
$$

Cox-Reid bias term
bias-corrected likelhood

$$
\operatorname{prior}(\alpha)=\log \left(f_{\mathcal{N}}\left(\log (\alpha) ; \log \left(\alpha_{\text {fit }}\right), \sigma_{\text {prior }}^{2}\right)\right.
$$

prior on a by 'information sharing' across genes

$$
\hat{\alpha}_{\mathrm{CR}-\mathrm{MAP}}=\operatorname{argmax}(\ell(\alpha \mid y, \hat{\mu})+\mathrm{CR}(\alpha)+\operatorname{prior}(\alpha))
$$

## Outlier robustness


samples

samples

Gene A - Cook's dist.

samples

Gene B - Cook's dist.


Cook's distance: Change in fitted coefficients if the sample were removed

## regularized log-transformation: visualization, clustering, PCA



## GSEA with shrunken log fold changes



Fly cell culture, knock-down of pasilla versus control (Brooks et al., 2011) turquoise circles:

Reactome Path "APC/C-mediated degradation of cell cycle proteins" 56 genes, avg LFC: -0.15, $p$ value: $4 \cdot 10^{-11}$ (t test)

## Genes and transcripts

So far, we looked at read counts per gene.

A gene's read count may increase because the gene produces more transcripts because the gene produces longer transcripts

How to look at gene sub-structure?

## Alternative isoform regulation

## Alejandro



Data: Brooks, ..., Graveley, Genome Res., 2010

## Count table for a gene

number of reads mapped to each exon in a gene

|  | treated 1 | treated 2 | control 1 | control 2 |  |
| :--- | ---: | ---: | ---: | ---: | :--- |
| E01 | $3 \overline{9} 8$ | 556 | $5 \overline{6} 1$ | 456 |  |
| E02 | 112 | 180 | 153 | 137 |  |
| E03 | 238 | 306 | 298 | 226 |  |
| E04 | 162 | 171 | 183 | 146 |  |
| E05 | 192 | 272 | 234 | 199 |  |
| E06 | 314 | 464 | 419 | 331 |  |
| E07 | 373 | 525 | 481 | 404 |  |
| E08 | 323 | 427 | 475 | 373 |  |
| E09 | 194 | 213 | 273 | 176 |  |
| E10 | 90 | 90 | 530 | 398 | $<---$ |
| E11 | 172 | 207 | 283 | 227 |  |
| E12 | 290 | 397 | 606 | 368 | $<---$ |
| E13 | 33 | 48 | 33 | 33 |  |
| E14 | 0 | 33 | 2 | 37 |  |
| E15 | 248 | 314 | 468 | 287 |  |
| E16 | 554 | 841 | 1024 | 680 |  |
| [...] |  |  |  |  |  |

## Differential exon usage

## msn-mishappen



FBgn0004449 -

## Ten-m



## DEXSeq

$$
K_{i j l} \sim \operatorname{NB}\left(s_{j} \mu_{i j l}, \alpha_{i l}\right)
$$

counts in gene $i$,
size $\uparrow \quad$ dispersion
sample $j$, exon $l$

$$
\log \mu_{i j l}=\beta_{i}^{0}+\beta_{i l}^{\mathrm{E}} x_{l}^{\mathrm{E}}+\beta_{i j}^{\mathrm{T}} x_{j}^{\mathrm{T}}+\beta_{i j l}^{\mathrm{ET}} x_{l}^{\mathrm{E}} x_{j}^{\mathrm{T}}
$$

expression strength in control

fraction of reads falling onto exon $l$ in control
change in expression due to treatment
change to fraction of reads for exon $l$ due to treatment

## DEXSeq

 test for changes in the (relative) usage of exons:number of reads mapping to the exon
number of reads mapping to the other exons of the same gene

## PKC 弓 - PKM 弓


long form: PKC-zeta

N -term. truncated: PKM-zeta


S/T-kinase


## Differential usage of exons or of isoforms?



| proper comparison, PFC vs CB: |  |  |  |
| :---: | :---: | :---: | :---: |
| PFC 1 - PFC 6 | CB 1, CB 2 | 650 | 114 |
| PFC 1, PFC 2 | CB 1, CB 2 | 56 | 230 |
| PFC 1, PFC 3 | CB 1, CB 2 | 18 | 361 |
| PFC 1, PFC 4 | CB 1, CB 2 | 26 | 370 |
| PFC 1, PFC 5 | CB 1, CB 2 | 32 | 215 |
| PFC 1, PFC 6 | CB 1, CB 2 | 27 | 380 |
| mock comparisons, PFC vs PFC |  |  |  |
| PFC 1, PFC 3 | PFC 2, PFC 4 | 3 | 405 |
| PFC 1, PFC 2 | PFC 3, PFC 4 | 0 | 399 |
| PFC 1, PFC 4 | PFC 2, PFC 3 | 244 | 590 |
| PFC 1, PFC 3 | PFC 2, PFC 5 | 2 | 628 |
| PFC 1, PFC 2 | PFC 3, PFC 5 | 1 | 499 |
| PFC 1, PFC 5 | PFC 2, PFC 3 | 2 | 555 |
| PFC 1, PFC 4 | PFC 2, PFC 5 | 2 | 460 |
| PFC 1, PFC 2 | PFC 4, PFC 5 | 2 | 504 |
| PFC 1, PFC 5 | PFC 2, PFC 4 | 2 | 308 |
| PFC 1, PFC 4 | PFC 3, PFC 5 | 10 | 497 |
| PFC 1, PFC 3 | PFC 4, PFC 5 | 5 | 554 |
| PFC 1, PFC 5 | PFC 3, PFC 4 | 0 | 353 |
| PFC 2, PFC 4 | PFC 3, PFC 5 | 1 | 476 |
| PFC 2, PFC 3 | PFC 4, PFC 5 | 10 | 823 |
| PFC 2, PFC 5 | PFC 3, PFC 4 | 0 | 526 |



More genes
with less
replicates

More genes
with
same-same
comparison

Table S2: Results of the comparison for the Brawand et al. data.


## Splicing Graphs

Heber, Steffen ... Pevzner, Pavel A. Splicing graphs and EST assembly problem Bioinformatics, 18, S181-S188, 2002.

SplicingGraphs package on Bioconductor

Figure 1: Splicing graph representation of the four transcript variants of gene CIB3 (Entrez ID 117286). Left: transcript representation. Right: splicing graph repre-

## Noisy Splicing Drives mRNA Isoform Diversity in Human Cells

Joseph K. Pickrell ${ }^{1 *}$, Athma A. Pai ${ }^{\mathbf{1 *},}$ Yoav Gilad ${ }^{1 *}$, Jonathan K. Pritchard ${ }^{1, \mathbf{2 *}^{*}}$
1 Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America, $\mathbf{2}$ Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America

## Abstract

While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newlyidentified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately $0.7 \%$ and show that introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate noisy splicing as an important property of genome evolution.

## PLoS Genetics 2010

"... we extrapolate that the majority of different mRNA isoforms present in a cell are not functionally relevant, though most copies of a pre-mRNA produce truly functional isoforms."


Figure 2. An example of splice junctions identified in a gene. In the top panel, we plot the average expression level at each base in a regior surrounding HERPUD1. In blue are bases annotated as exonic, and in black are those annotated as not exonic. In the middle panel, we plot the that are not. The number of sequencing reads supporting each junction is written to the right of each junction, and junctions are ordered from top tc bottom of the plot according to their coverage. In the bottom panel, we show the gene models in the region from Ensembl. The blue boxes show the positions of exons, and the black lines the positions of introns.

## Regulation of (alternative) exon usage



Data: multiple replicate samples each from:

- 6 primate species (hsa, ppa, ptr, ggo, ppy, mml) X
- 5 tissues (heart, kidney, liver, brain, cerebellum)

Brawand et al. Nature 2011 (Kaessmann Lab, Lausanne, CH)

## Tissue and species dependence of relative exon usage



## Drift and conservation of differential exon usage across tissues in primate species

Alejandro Reyes ${ }^{\text {a,1 }}$, Simon Anders ${ }^{\text {a, }, 1, ~ R o b e r t ~ J . ~ W e a t h e r i t t ~}{ }^{\mathrm{b}, 2}$, Toby J. Gibson ${ }^{\text {b }}$, Lars M. Steinmetz ${ }^{\text {a,c },}$


## Classification of exons



## Conservation: a core set of tissue-dependent exons across primates



## Strong patterns of tissue-dependent exon usage are frequently conserved



## Functional associations of conserved tissue-dependent exons




## Tissue-dependent usage patterns are associated with splicing

 factor binding motifs and suggest a cis-regulatory codemean tissue
dependent usage
$-1,0,1$



# Summary tissue-dependent exon usage 

Detection of tissue-dependent regulation and its conservation across species at unprecedented scale and precision.

Most of tissue-dependent alternative exon usage in primates is

- low amplitude
- noise
- little evidence for conservation

However, a significant fraction is

- high amplitude
- conserved
- associated with function in mRNA life-cycle \& localisation, translation regulation, protein interaction \& function


## Summary differential expression

- Text-book statistical concepts are (almost) sufficient for differential expression: ANOVA, hypothesis testing, generalized linear models
- In addition: small-n large-p - information sharing across genes, empirical Bayes, shrinkage
- In practice, visualisation ("drill down") and quality control (batch effects) are very important
- Exon-level analysis


Simon Anders Joseph Barry Bernd Fischer Julian Gehring Bernd Klaus Felix Klein Michael Love Malgorzata Oles Aleksandra Pekowska Paul-Theodor Pyl Alejandro Reyes Jan Swedlow

Lars Steinmetz
Robert Gentleman (Genentech)
Michael Boutros (DKFZ)
Martin Morgan (FHCRC) Jan Korbel
Magnus Rattray (Manchester)
Special thanks
to all users who provided feed-back

