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Late 1980s: Lennon, Lehrach: cDNAs spotted on nylon membranes

1990s: Affymetrix adapts microchip production technology for in situ 
oligonucleotide synthesis (commercial, patent-fenced)

1990s: Brown lab in Stanford develops two-colour spotted array 
technology (open and free)

1998: Yeast cell cycle expression profiling on spotted arrays 
(Spellmann) and Affymetrix (Cho)

1999: Tumor type discrimination based on mRNA profiles (Golub)

2000-ca. 2004: Affymetrix dominates the microarray market

Since ~2003: Nimblegen, Illumina, Agilent (and others)

Throughout 2000‘s: CGH, CNVs, SNPs, ChIP, tiling arrays

Since ~2007: 2nd-generation sequencing (454, Solexa)

Brief  history



Base Pairing

Ability to use hybridisation for constructing specific + 
sensitive probes at will is unique to DNA (cf. proteins, 

RNA, metabolites)



Oligonucleotide microarrays

5µm

millions of copies of 
a specific 
oligonucleotide 
probe molecule per 
cell

 Image of array after hybridisation 
and staining

up to 6.5 Mio
different probe cells

Target - single stranded cDNA
oligonucleotide probe
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*
*
*

1.28cm

GeneChip Hybridized Probe Cell



Image analysis

• several dozen 
pixels per feature
• segmentation
• summarisation into 
one number 
representing the 
intensity level for 
this feature 
à CEL file



µarray data

samples:
mRNA from
tissue 
biopsies,
cell lines

arrays:
probes = 
gene-specific 
DNA strands
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Microarray Analysis Tasks

Data import
reformating and setup/curation of  the metadata

Normalisation
Quality assessment & control

Differential expression

Using gene-level annotation
Gene set enrichment analysis

Clustering & Classification

Integration of  other datasets



Platform-specific data import and initial processing

Affymetrix 3’ IVT (e.g. Human U133 Plus 2.0, Mouse 430 2.0): 
          affy

Affymetrix Exon (e.g. Human Exon 1.0 ST):  
          oligo, exonmap, xps

Affymetrix SNP arrays: 
          oligo

Illumina bead arrays: 
          beadarray, lumi

http://www.bioconductor.org/docs/workflows/oligoarrays

http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.bioconductor.org/docs/workflows/oligoarrays/
http://www.bioconductor.org/docs/workflows/oligoarrays/


Flexible data import

Using generic R I/O functions and constructors
Biobase
limma

Chapter Two Color Arrays in the useR-book.
limma user guide

          



Normalisation and quality 
assessment

preprocessCore
limma
vsn

arrayQualityMetrics

          



NChannelSet
assayData can contain N=1, 2, ..., matrices of  the same size
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Annotation / Metadata

Keeping data together with the metadata (about reporters, 
target genes, samples, experimental conditions, ...) is one 
of  the major principles of  Bioconductor

• avoid alignment bugs

• facilitate discovery  

→ Matrices with “rich” column and row names.



Annotation infrastructure for 
Affymetrix

hgu133plus2probe nucleotide sequence of  
the features (for preprocessing e.g. gcrma; for 
own annotation)
hgu133plus2cdf  maps the physical features 
on the array to probe sets
hgu133plus2.db maps probe sets to target 
genes and provides target gene annotation 
collected from public databases



Many data are measured in 
definite units:

• time in seconds
• lengths in meters
• energy in Joule, etc.
 
Climb Mount Plose (2465 m) from 

Brixen (559 m) with weight of 
76 kg, working against a 
gravitation field of strength 
9.81 m/s2 :

  
 

u What is wrong with microarray data?

(2465 - 559) · 76 · 9.81  m kg m/s2

  = 1 421 037 kg m2 s-2

  = 1 421.037 kJ



A complex measurement process lies between 
mRNA concentrations and intensities

o RNA 
degradation

o quality of actual 
probe sequences 
(vs intended)

o image 
segmentation

o amplification 
efficiency

o scratches and 
spatial gradients 
on the array

o signal 
quantification

o reverse 
transcription 
efficiency

o cross-talk 
across features

o signal 
"preprocessing"

o hybridization 
efficiency and 
specificity

o cross-
hybridisation

o labeling 
efficiency

o optical noise

The problem is less that these 
steps are ‘not perfect’; it is that 
they vary from array to array, 
experiment to experiment.



Background signal and 
non-linearities



log2
Cope et al. 
Bioinformatics 
2003

spike-in data
“mild” non-linearity

linear range: y ~ x

saturation kicks in

background signal



u ratio compression

Yue et al., 
(Incyte 

Genomics) 
NAR (2001) 

29 e41

nominal 
3:1

nominal 
1:1

nominal 
1:3



Statistical issues



tumor-normal

u Which genes are differentially transcribed?

same-same

log-ratio



u Sources of  variation
amount of RNA in the biopsy 
efficiencies of
-RNA extraction
-reverse transcription 
-labeling
-fluorescent detection

probe purity and length 
 distribution
spotting efficiency, spot size
cross-/unspecific hybridization
stray signal

Calibration Error model

Systematic 
o similar effect on many 
measurements
o corrections can be 
estimated from data

Stochastic
o too random to be ex-
plicitely accounted for 
o remain as “noise”



Why do you need 
‘normalisation’

(a.k.a. calibration)?



From: lymphoma 
dataset

vsn package

Alizadeh et al., 
Nature 2000

Systematic effects



Quantile normalisation

Ben Bolstad 2001

Within each column (array), 
replace the intensity values by 
their rank

For each rank, compute the 
average of  the intensities with 
that rank, across columns 
(arrays)

Replace the ranks by those 
averages

arrays (samples)
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Quantile  normalisation 
+ Simple, fast, easy to implement
+ Always works, needs no user interaction / tuning
+ Non-parametric: can correct for quite nasty non-linearities 

(saturation, background) in the data

- Always "works", even if data are bad / inappropriate
- May be conservative: rank transformation looses 

information - may yield less power to detect differentially 
expressed genes

- Aggressive: if there is an excess of up- (or down) regulated 
genes, it removes not just technical, but also biological 
variation

Less aggressive methods exist, e.g. loess, vsn



Estimating relative 
expression 

(fold-changes)



u ratios and fold changes
Fold changes are useful to describe 
continuous changes in expression

1000
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x1.5

A B C

0
200

3000
?

?

A B C

But what if the gene is “off” (below 
detection limit) in one condition?



u ratios and fold changes
The idea of the log-ratio (base 2)
 0: no change
  +1: up by factor of 21 = 2
  +2: up by factor of 22 = 4
  -1: down by factor of 2-1 = 1/2
  -2: down by factor of 2-2 = ¼

What about a change from 0 to 500?
- conceptually
- noise, measurement precision

A unit for measuring changes in expression: assumes that 
a change from 1000 to 2000 units has a similar biological 
meaning to one from 5000 to 10000.
…. data reduction



The two-component model for microarray data

raw scale log scale

“additive” noise

“multiplicative” 
noise

B. Durbin, D. Rocke, JCB 2001



The additive-multiplicative error 
model
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Trey Ideker et al.: JCB (2000) 
David Rocke and Blythe Durbin: JCB (2001), Bioinformatics (2002) 
For robust affine regression normalisation: W. Huber et al. Bioinformatics (2002)
For background correction in RMA: R. Irizarry et al., Biostatistics (2003)



Two component 
error models

Microarrays
var(μ) = b + c⋅μ2

b: background
c: asymptotic coefficient of 
variation
Sequencing counts
early edgeR:
var(μ) = μ + α⋅μ2

μ: from Poisson 
α: dispersion
DESeq
var(μ) = μ + α(μ)⋅μ2

DESeq parametric option
α(μ) = a1/μ + a0            ⇔ 

var(μ) = μ + a1⋅μ + a0⋅μ2

mean

va
ria
nc
e

10^−4

10^−2

10^0

10^2

10^4

10^6

10^8

10^0 10^1 10^2 10^3 10^4

Poisson: v ~ μ1

NB: v ~ μ2



u variance stabilizing transformation

f(x
)

x



u variance stabilizing transformations

Xu a family of random variables with 
E(Xu) = u    and    Var(Xu) = v(u).    Define

Then,   var f(Xu ) ≈  does not depend on u

Derivation: linear approximation,
 relies on smoothness of v(u).



u the “glog” transformation

P. Munson, 2001

D. Rocke & B. Durbin, 
ISMB 2002

W. Huber et al., ISMB 
2002



raw scale log glog

difference

log-ratio

generalized 

log-ratio

constant part
variance:

proportional part

u glog



“usual” log-ratio

'glog' 
(generalized 
log-ratio)

c1, c2 are experiment specific parameters (~level 
of background noise)



u Variance-bias trade-off  and shrinkage 
estimators

Same-same 
comparison

log-ratio

glog-ratio

Lines: 29 data 
points with 
observed 
ratio of 2

Fig. 5.11 from Hahne et al. (useR book)



u Variance-bias trade-off  and shrinkage 
estimators

Shrinkage estimators:
a general technology in statistics:
pay a small price in bias for a large decrease of variance, so 
overall the mean-squared-error (MSE) is reduced. 

Particularly useful if you have few replicates.

Generalized log-ratio is a shrinkage estimator for log fold 
change



Quality assessment

arrayQualityMetrics 
example quality report
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Summaries for Affymetrix 
genechip probe sets



Data and notation
PMikg , MMikg = Intensities for perfect match and 
    mismatch probe k for gene g on chip i 
i = 1,…, n one to hundreds of chips
k = 1,…, J  usually 11 probe pairs
g = 1,…, G  tens of thousands of probe sets.

Tasks: 
calibrate (normalize) the measurements from different chips 

(samples)
summarize for each probe set the probe level data, i.e., 11 PM 

and MM pairs, into a single expression measure.
compare between chips (samples) for detecting differential 

expression.



Expression measures: 
MAS 4.0

Affymetrix GeneChip  MAS 4.0 software used AvDiff, 
a trimmed mean:

o sort dk = PMk -MMk 
o exclude highest and lowest value
o K := those pairs within 3 standard deviations of 

the average



Expression measures 
MAS 5.0

Instead of MM, use "repaired" version CT
 CT = MM      if MM<PM
     = PM / "typical log-ratio"  if MM>=PM

Signal = Weighted mean of the values log(PM-CT)
   weights follow Tukey Biweight function 
   (location = data median, 
     scale a fixed multiple of MAD)
  
       



Expression measures: 
Li & Wong

dChip fits a model for each gene

where
φi : expression measure for the gene in sample i
θk : probe effect

φi  is estimated by maximum likelihood





dChip

RMA

bi is estimated using the robust method median polish 
(successively remove row and column medians, 
accumulate terms, until convergence).

Expression measures 
RMA: Irizarry et al. (2002)



further 
background

correction 
methods



Background correction

Irizarry et al. 
Biostatistics 
2003

0 pm

500 fm 1 pm

750 fm



RMA Background correction

Irizarry et al. (2002)



Background correction: 

raw 
intensities x

biased 
background 
correction

s=E[S|data]

unbiased 
background 
correction

s=x-b

log2(s) glog2(s|data)

?



Comparison between RMA and VSN 
background correction

vsn package 
vignette

Figure 6: Results of vsnrma and rma on the Dilution example data. Array 1 was hybridised with 20µg
RNA from liver, array 3 with 10µg of the same RNA.

method for NChannelSet. The return value is an
NChannelSet, shown in Table 2. Note that, due to
the flexibility in the amount and quality of meta-
data that is in an RGList, and due to di�erences
in the implementation of these classes, the transfer
of the metadata into the NChannelSet may not al-
ways produce the expected results, and that some
checking and often further dataset-specific postpro-
cessing of the sample metadata and the array fea-
ture annotation is needed. For the current exam-
ple, we construct the AnnotatedDataFrame object
adf and assign it into the phenoData slot of lym-
NCS.

> vmd = data.frame(

+ labelDescription=I(c("array ID",

+ "sample in G", "sample in R")),

+ channel=c("_ALL", "G", "R"),

+ row.names=c("arrayID", "sampG", "sampR"))

> arrayID = lymphoma$name[wr]

> stopifnot(identical(arrayID,

+ lymphoma$name[wg]))

> ## remove sample number suffix

> sampleType = factor(sub("-.*", "",

+ lymphoma$sample))

> v = data.frame(

+ arrayID = arrayID,

+ sampG = sampleType[wg],

+ sampR = sampleType[wr])

> v

arrayID sampG sampR
1 lc7b047 reference CLL
2 lc7b048 reference CLL
3 lc7b069 reference CLL
4 lc7b070 reference CLL
5 lc7b019 reference DLCL
6 lc7b056 reference DLCL
7 lc7b057 reference DLCL
8 lc7b058 reference DLCL

> adf = new("AnnotatedDataFrame",

+ data=v,

+ varMetadata=vmd)

> phenoData(lymNCS) = adf

Now let us combine the red and green values from
each array into the glog-ratio M and use the linear
modeling tools from limma to find di�erentially ex-
pressed genes (note that it is often suboptimal to
only consider M, and that taking into account ab-
solute intensities as well can improve analyses).

> lymM = (assayData(lymNCS)$R -

+ assayData(lymNCS)$G)

> design = model.matrix( ~ lymNCS$sampR)

> lf = lmFit(lymM, design[, 2, drop=FALSE])

> lf = eBayes(lf)

Figure 7 on page 7 shows the resulting p-values and
the expression profiles of the genes corresponding
to the top 5 features.
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