Variant Calling with $\mathrm{R} /$ Bioconductor

Michael Lawrence

July 16, 2013

Outline

Introduction to the dataset
Experiment
Algorithm
Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Outline

Introduction to the dataset
Experiment
Algorithm
Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Outline

Introduction to the dataset Experiment
Algorithm Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Goals and Scope

- Determine the genotype of a sample
- Call single nucleotide variants vs. reference from high-throughput sequencing data, including WGS, Exome-seq and (eventually) RNA-seq
- Support users to filter the variant calls according to the biological context and questions of interest
- Be sensitive to low frequency variants
- Be robust to aneuploidy, cell mixtures, contamination
- Permit estimation of sample heterogeneity

Variant Calling Process

Data Generation

1. Library prep (PCR)
2. Sequencing
3. Alignment

Each of these steps will introduce noise that requires filtering.
Variant Calling

T C
T GT GCA
TT GT GCA
TTCGTCGCA
TTCGTCGCA
TTCGTCGCAA
TACGTCGCAA
TACGTCGCAA
TACGTCGTAA
TACGTCGTAA
TACGTCGTAC
TTCATCGCAA

Biological Considerations

These generate a range of variant frequencies:

- Aneuploidy
- Heterogeneity
- Contamination

Thus, there is no "one-p-fits-all" solution to variant calling.

Existing Solutions

Other tools for calling variants vs. reference include:
samtools mpileup Generates statitics useful for variant calling
vcfutils
Varscan2
GATK

Perl script for filtering mpileup output Series of adhoc filters on mpileup output Oriented towards genotyping in diploid samples

There are also comparative (somatic mutation) callers (strelka, MuTect, etc), but we are focused on calling vs. reference.

Benchmark Dataset

- To develop an algorithm, we need to benchmark its sensitivity and specificity, but no gold standard exists.
- Biochemically mixed two HapMap daughter cell lines in different proportions to realistically simulate variant frequencies expected from complex samples. Sequenced each genome with 75bp reads.

Sequencing Output: 23-24X average coverage

Sample	\% CEU	\% YRI	\# Reads (analyzed)	Avg. Coverage
1	90	10	$461,449,560$	22.3
2	90	10	$475,567,437$	23.0
3	90	10	$460,196,498$	22.3
4	50	50	$489,166,262$	23.7
5	50	50	$442,737,941$	21.4
6	50	50	$430,779,023$	20.8
7	10	90	$496,958,600$	24.0
8	10	90	$494,245,570$	23.9
9	10	90	$534,458,340$	25.8

Genotypes

Cell Line	Trio	Source	Ref	Coverage	Total Het/Hom
NA12878	CEU	Broad	hg19	$64 X$	$2451814 / 1410358$
NA12878	CEU	1000G	hg18	61 X	$1703706 / 1061942$
CEU Union	CEU	Both			$2424095 / 1427209$
NA19240	YRI	1000G	hg18	66X	$2227251 / 1108784$

10/90 combinations

$10 / 90$	0	0.5	1
0	-	0.45	0.90
0.5	0.05	0.50	0.95
1	0.10	0.55	1.0

50/50 combinations

$50 / 50$	0	0.5	1
0	-	0.25	0.50
0.5	0.25	0.50	0.75
1	0.50	0.75	1.0

QC of mixture ratios

Hom alt in CEU

QC of variant frequencies

Outline

Introduction to the dataset
Experiment
Algorithm
Performance

Interactive demonstration

Overview
Alignment
Variant calling
Exploratory analysis

Overview

Outline

Introduction to the dataset
Experiment
Algorithm
Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Definitions

VariantTools Call

FNR high at low/high coverage

Recovery rate (1-FNR) vs. GATK

FDR by coverage bin

Evidence that some FP are real

Replication dbSNP Concordance

Selected FP: GATK vs. VariantTools

Selected FPs at reasonable (45-85X) coverage, outside of structural variants and multi-mapping regions.

Acknowledgements

Leonard Goldstein
Melanie Huntley
Yi Cao
Robert Gentleman

Outline

Introduction to the dataset

Experiment

Algorithm
Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Outline

Introduction to the dataset

> Experiment
> Algorithm
> Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Overview

Data

Subset of the mixture data consisting only of the $50 / 50$ samples, and only reads aligning within 1 Mb of p53.

Strategy

1. Align sequences to the p 53 region.
2. Generate tallies (pileup) from the alignments.
3. Call/filter variants.
4. Perform exploratory analysis on the calls and concordance with canonical genotypes.

Outline

Introduction to the dataset

> Experiment
> Algorithm
> Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

The gmapR package

gmapR is an R interface to the GMAP/GSTRUCT suite of alignment tools, including:

GSNAP a short read aligner distinguished by its ability to generate spliced alignments from RNA-seq data (also handles DNA)
bam_tally summarizes alignments by counting $A / C / G / T$ (and optionally indels) at each position and tabulating by strand, read position and quality

Configure GSNAP parameters

- GSNAP is a complex tool with a complex interface, consisting of many command-line parameters.
- gmapR supports all parameters, while providing a high-level interface with reasonable defaults.
- The parameters are stored in a GsnapParams object.
- We construct a simple GsnapParams for generating unique DNA alignments to ${ }^{\sim} 2 \mathrm{Mb}$ region around p 53 :
library (gmapR)
param <- GsnapParam(TP53Genome(), unique_only = TRUE, molecule = "DNA")

Align with GSNAP

We find our FASTQ files inside the VariantToolsTutorial package:

```
extdata.dir <- system.file("extdata",
                                package="VariantToolsTutorial")
```

first.fastq <- dir(extdata.dir, "first.fastq",
full.names=TRUE)
last.fastq <- dir(extdata.dir, "last.fastq",
full.names=TRUE)

And generate the GSNAP alignments (for the first sample), which gmapR automatically converts to indexed BAMs:
output <- gsnap(first.fastq[1], last.fastq[1], param)
bam <- as(output, "BamFile")

Outline

Introduction to the dataset

> Experiment
> Algorithm
> Performance

Interactive demonstration
Overview
Alignment

Variant calling

Exploratory analysis

The VariantTools package

VariantTools is a set of utilities for:

- Tallying alignments (via gmapR)
- Annotating tallies
- Filtering tallies into variant calls
- Exporting tallies to VCF (actually VariantAnnotation)
- Wildtype calling (for a specific set of filters)
- Sample ID verification via rudimentary genotyping

Generate nucleotide tallies

The underlying bam_tally from GSTRUCT accepts a number of parameters, which we specify as a TallyVariantsParam object. The genome is required; we also mask out the repeats.
|library (VariantTools)
data(repeats, package = "VariantToolsTutorial")
param <- TallyVariantsParam(TP53Genome(), mask = repeats)
Tallies are generated via the tallyVariants function:
|tallies <- tallyVariants(bam, param)

Loading and combining three samples worth of tallies

The alignments and tallies were generated for all three replicates of the 50/50 mixture and placed in the package. |data(tallies, package = "VariantToolsTutorial")
We combine the samples in two different ways: stacked (long form) and merged (depths summed).

```
stacked.tallies <- stackSamples(tallies)
merged.tallies <- merge(tallies)
sampleNames(merged.tallies) <- "merged"
```


Configure filters

VariantTools implements its filters within the FilterRules framework from IRanges. The default variant calling filters are constructed by VariantCallingFilters:
|calling.filters <- VariantCallingFilters()
Post-filters are filters that attempt to remove anomalies from the called variants:
|post.filters <- VariantPostFilters()

Filter tallies into variant calls

The filters are then passed to the callVariants function:
merged.variants <- callVariants(merged.tallies,

calling.filters,
post.filters)

Or more simply in this case:

```
merged.variants <- callVariants(merged.tallies)
stacked.variants <- callVariants(stacked.tallies)
```


Or, call variants directly from a BAM

|variants <- callVariants(bam, param)
Note
Convenient for simple exercises, but does not facilitate diagnostics

Outline

Introduction to the dataset

> Experiment
> Algorithm
> Performance

Interactive demonstration
Overview
Alignment
Variant calling
Exploratory analysis

Alternative allele frequencies

Check the quality of our mixtures:

```
stacked.variants$altFraction <-
    altDepth(stacked.variants) / totalDepth(stacked.variants)
    library(ggplot2)
qplot(altFraction, geom = "density", color = sampleNames,
    data = as.data.frame(stacked.variants))
```


Annotating variants with genotype concordance

We want to see how well our calls recapitulate the genotypes from 1000G; we have these prepared as a dataset:
|data(geno, package = "VariantToolsTutorial")
Merge the expected frequencies of each alt with the variant calls:
naToZero <- function(x) ifelse(is.na(x), OL, x) addExpectedFreqs <- function(x) \{
expected.freq <- geno\$expected.freq[match(x, geno)]
x\$expected.freq <- naToZero(expected.freq)
x
\}
stacked.variants <- addExpectedFreqs(stacked.variants) merged.variants <- addExpectedFreqs(merged.variants)

Annotating the genotypes with merged variant calls

Annotate the genotypes for whether an alt allele was called in the merged data, and also add the alt and total depth:

```
softFilterMatrix(geno) <-
    cbind(in.merged = geno %in% merged.variants)
mean(called(geno))
```

0.710044395116537

```
m <- match(geno, merged.tallies)
altDepth(geno) <- naToZero(altDepth(merged.tallies)[m])
totalDepth(geno) <- naToZero(totalDepth(merged.tallies)[m])
```


False negatives: which filter to blame?

Apply the calling filters to our FN and summarize the results:

```
fn.geno <- geno[!called(geno)]
    fn.geno <- resetFilter(fn.geno)
    filters <- hardFilters(merged.variants)[3:4]
    fn.geno <- softFilter(fn.geno, filters)
    t(summary(softFilterMatrix(fn.geno)))
```

<initial>	readCount	likelihoodRatio	<final>
1045	24	33	24

The default is to evaluate the filters in parallel, but serial evaluation is also supported:

```
fn.geno <- resetFilter(fn.geno)
fn.geno <- softFilter(fn.geno, filters, serial = TRUE)
t(summary(softFilterMatrix(fn.geno)))
```

<initial>	readCount	likelihoodRatio	<final>
1045	24	24	24

dbSNP concordance

Import a VRanges from (p53) dbSNP VCF:

```
vcfPath <- system.file("extdata", "dbsnp-p53.vcf.gz",
    package = "VariantToolsTutorial")
param <- ScanVcfParam(fixed = "ALT", info = NA, geno = NA)
dbSNP <- as(readVcf(vcfPath, param, genome = "hg19"),
    "VRanges")
dbSNP <- dbSNP[!isIndel(dbSNP)]
```

And annotate the stacked variants for concordance:
stacked.variants\$dbSNP <- stacked.variants \%in\% dbSNP xtabs(~ dbSNP + expected.freq, mcols(stacked.variants))

	0	0.25	0.5	0.75	1
FALSE	2058	19	0	0	0
TRUE	803	3255	1880	864	891

Replication over the samples

Tabulate the stacked variants over the samples:
tabulated.variants <- tabulate(stacked.variants)
xtabs(~ dbSNP + sample.count, mcols(tabulated.variants))

	1	2	3
FALSE	1373	217	90
TRUE	100	381	2277

Visualizing putative FPs: IGV

IGV is an effective tool for exploring alignment issues and other variant calling anomalies; SRAdb drives IGV from R.
To begin, we create a connection:
library (SRAdb)
startIGV("lm")
sock <- IGVsocket()

Creating an IGV session

Create an IGV session with our VCF, BAMs and custom p53 genome:

```
extdata <- system.file("extdata",
    package = "VariantToolsTutorial")
    bams <- tools::list_files_with_exts(extdata, "bam")
    p53fasta <- tempfile("p53", fileext = ".fasta")
    rtracklayer::export(TP53Genome(), p53fasta)
    session <- IGVsession(c(bams, vcf), "session.xml",
    p53fasta)
```

Load the session:
|IGVload(sock, session)

Browsing regions of interest

IGV will (manually) load BED files as a list of bookmarks:
|rtracklayer::export(merged.variants, "roi.bed")

