Variant Calling with R/Bioconductor

Michael Lawrence

July 16, 2013

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Goals and Scope

- Determine the genotype of a sample
- Call single nucleotide variants vs. reference from high-throughput sequencing data, including WGS, Exome-seq and (eventually) RNA-seq
- Support users to filter the variant calls according to the biological context and questions of interest
- ▶ Be sensitive to low frequency variants
 - ▶ Be robust to aneuploidy, cell mixtures, contamination
 - Permit estimation of sample heterogeneity

Variant Calling Process

Data Generation

- 1. Library prep (PCR)
- 2. Sequencing
- 3. Alignment

Each of these steps will introduce noise that requires filtering.

Variant Calling

Biological Considerations

These generate a range of variant frequencies:

- Aneuploidy
- Heterogeneity
- Contamination

Thus, there is no "one-p-fits-all" solution to variant calling.

Existing Solutions

Other tools for calling variants vs. reference include:

samtools mpileup	Generates statitics useful for variant calling
vcfutils	Perl script for filtering mpileup output
Varscan2	Series of adhoc filters on mpileup output
GATK	Oriented towards genotyping in diploid samples

There are also comparative (somatic mutation) callers (strelka, MuTect, etc), but we are focused on calling vs. reference.

Benchmark Dataset

- To develop an algorithm, we need to benchmark its sensitivity and specificity, but no gold standard exists.
- ▶ Biochemically mixed two HapMap daughter cell lines in different proportions to realistically simulate variant frequencies expected from complex samples. Sequenced each genome with 75bp reads.

Sequencing Output: 23-24X average coverage

Sample	% CEU	% YRI	# Reads (analyzed)	Avg. Coverage
1	90	10	461,449,560	22.3
2	90	10	475,567,437	23.0
3	90	10	460,196,498	22.3
4	50	50	489,166,262	23.7
5	50	50	442,737,941	21.4
6	50	50	430,779,023	20.8
7	10	90	496,958,600	24.0
8	10	90	494,245,570	23.9
9	10	90	534,458,340	25.8

Genotypes

Cell Line	Trio	Source	Ref	Coverage	Total Het/Hom
NA12878	CEU	Broad	hg19	64X	2451814/1410358
NA12878	CEU	1000G	hg18	61X	1703706/1061942
CEU Union	CEU	Both			2424095/1427209
NA19240	YRI	1000G	hg18	66X	2227251/1108784
NA12878 CEU Union	CEU CEU	1000G Both	hg18	61X	1703706/1061942 2424095/1427209

10/90 combinations

50/50 combinations

10/90	0	0.5	1
0	-	0.45	0.90
0.5	0.05	0.50	0.95
1	0.10	0.55	1.0

50/50	0	0.5	1
0	-	0.25	0.50
0.5	0.25	0.50	0.75
1	0.50	0.75	1.0

QC of mixture ratios

QC of variant frequencies

Introduction to the dataset

Experimen

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Overview

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Definitions

FNR high at low/high coverage

Recovery rate (1 - FNR) vs. GATK

FDR by coverage bin

Evidence that some FP are real

Replication

dbSNP Concordance

	NOT dbSNP	IN dbSNP
1 Rep	695468	120266
2+ Reps	391879	781940

Selected FP: GATK vs. VariantTools

Selected FPs at reasonable (45-85X) coverage, outside of structural variants and multi-mapping regions.

Acknowledgements

Leonard Goldstein Melanie Huntley Yi Cao Robert Gentleman

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Overview

Data

Subset of the mixture data consisting only of the 50/50 samples, and only reads aligning within 1 Mb of p53.

Strategy

- 1. Align sequences to the p53 region.
- 2. Generate tallies (pileup) from the alignments.
- 3. Call/filter variants.
- Perform exploratory analysis on the calls and concordance with canonical genotypes.

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

The gmapR package

gmapR is an R interface to the GMAP/GSTRUCT suite of alignment tools, including:

GSNAP a short read aligner distinguished by its ability to generate spliced alignments from RNA-seq data (also handles DNA)

bam_tally summarizes alignments by counting A/C/G/T (and optionally indels) at each position and tabulating by strand, read position and quality

Configure GSNAP parameters

- GSNAP is a complex tool with a complex interface, consisting of many command-line parameters.
- gmapR supports all parameters, while providing a high-level interface with reasonable defaults.
- ▶ The parameters are stored in a GsnapParams object.
- ► We construct a simple GsnapParams for generating unique DNA alignments to ~2Mb region around p53:

Align with GSNAP

We find our FASTQ files inside the VariantToolsTutorial package:

And generate the GSNAP alignments (for the first sample), which gmapR automatically converts to indexed BAMs:

```
output <- gsnap(first.fastq[1], last.fastq[1], param)
bam <- as(output, "BamFile")</pre>
```

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

The VariantTools package

VariantTools is a set of utilities for:

- ► Tallying alignments (via gmapR)
- Annotating tallies
- Filtering tallies into variant calls
- Exporting tallies to VCF (actually VariantAnnotation)
- Wildtype calling (for a specific set of filters)
- Sample ID verification via rudimentary genotyping

Generate nucleotide tallies

The underlying bam_tally from GSTRUCT accepts a number of parameters, which we specify as a TallyVariantsParam object. The genome is required; we also mask out the repeats.

```
library(VariantTools)
data(repeats, package = "VariantToolsTutorial")
param <- TallyVariantsParam(TP53Genome(), mask = repeats)
Tallies are generated via the tallyVariants function:
tallies <- tallyVariants(bam, param)</pre>
```

Loading and combining three samples worth of tallies

The alignments and tallies were generated for all three replicates of the 50/50 mixture and placed in the package.

```
data(tallies, package = "VariantToolsTutorial")
```

We combine the samples in two different ways: stacked (long form) and merged (depths summed).

```
stacked.tallies <- stackSamples(tallies)
merged.tallies <- merge(tallies)
sampleNames(merged.tallies) <- "merged"</pre>
```

Configure filters

VariantTools implements its filters within the FilterRules framework from IRanges. The default variant calling filters are constructed by VariantCallingFilters:

calling.filters <- VariantCallingFilters()</pre>

Post-filters are filters that attempt to remove anomalies from the called variants:

post.filters <- VariantPostFilters()</pre>

Filter tallies into variant calls

The filters are then passed to the callVariants function:

Or more simply in this case:

```
merged.variants <- callVariants(merged.tallies)
stacked.variants <- callVariants(stacked.tallies)</pre>
```

Or, call variants directly from a BAM

variants <- callVariants(bam, param)</pre>

Note

Convenient for simple exercises, but does not facilitate diagnostics

Introduction to the dataset

Experiment

Algorithm

Performance

Interactive demonstration

Overview

Alignment

Variant calling

Alternative allele frequencies

Check the quality of our mixtures:

Annotating variants with genotype concordance

We want to see how well our calls recapitulate the genotypes from 1000G; we have these prepared as a dataset:

```
data(geno, package = "VariantToolsTutorial")
```

Merge the expected frequencies of each alt with the variant calls:

```
naToZero <- function(x) ifelse(is.na(x), 0L, x)
addExpectedFreqs <- function(x) {
   expected.freq <- geno$expected.freq[match(x, geno)]
   x$expected.freq <- naToZero(expected.freq)
   x
}
stacked.variants <- addExpectedFreqs(stacked.variants)
merged.variants <- addExpectedFreqs(merged.variants)</pre>
```

Annotating the genotypes with merged variant calls

Annotate the genotypes for whether an alt allele was called in the merged data, and also add the alt and total depth:

```
softFilterMatrix(geno) <-
  cbind(in.merged = geno %in% merged.variants)
mean(called(geno))</pre>
```

0.710044395116537

```
m <- match(geno, merged.tallies)
altDepth(geno) <- naToZero(altDepth(merged.tallies)[m])
totalDepth(geno) <- naToZero(totalDepth(merged.tallies)[m])</pre>
```

False negatives: which filter to blame?

Apply the calling filters to our FN and summarize the results:

```
fn.geno <- geno[!called(geno)]
fn.geno <- resetFilter(fn.geno)
filters <- hardFilters(merged.variants)[3:4]
fn.geno <- softFilter(fn.geno, filters)
t(summary(softFilterMatrix(fn.geno)))</pre>
```

<initial></initial>	readCount	likelihoodRatio	<final></final>
1045	24	33	24

The default is to evaluate the filters in parallel, but serial evaluation is also supported:

```
fn.geno <- resetFilter(fn.geno)
fn.geno <- softFilter(fn.geno, filters, serial = TRUE)
t(summary(softFilterMatrix(fn.geno)))</pre>
```

<initial></initial>	readCount	likelihoodRatio	<final></final>
1045	24	24	24

dbSNP concordance

Import a VRanges from (p53) dbSNP VCF:

And annotate the stacked variants for concordance:

```
stacked.variants \$dbSNP <- stacked.variants \%in\% \ dbSNP \\ xtabs(^ dbSNP + expected.freq, mcols(stacked.variants))
```

	0	0.25	0.5	0.75	1
FALSE	2058	19	0	0	0
TRUE	803	3255	1880	864	891

Replication over the samples

Tabulate the stacked variants over the samples:

```
tabulated.variants <- tabulate(stacked.variants)
xtabs(~ dbSNP + sample.count, mcols(tabulated.variants))</pre>
```

	1	2	3
FALSE	1373	217	90
TRUE	100	381	2277

Visualizing putative FPs: IGV

IGV is an effective tool for exploring alignment issues and other variant calling anomalies; SRAdb drives IGV from R. To begin, we create a connection:

```
library(SRAdb)
startIGV("lm")
sock <- IGVsocket()</pre>
```

Creating an IGV session

Create an IGV session with our VCF, BAMs and custom p53 genome:

Load the session:

```
IGVload(sock, session)
```

Browsing regions of interest

```
IGV will (manually) load BED files as a list of bookmarks:
| rtracklayer::export(merged.variants, "roi.bed")
```