Associating differential ER binding with clinical outcome in breast cancer

RORY STARK 18 JULY 2013

ChIP-seq for functional genomics

Most ChIP-Seq studies to date have focused on **mapping**, not **function** (cf ENCODE)

- Comparisons limited to peak overlaps (co-occupancy)
- Limited quantitative analysis

Most functional studies to date have focused on RNA levels

- Well established design/analysis
- Unable to directly distinguish driver/upstream from passenger/ downstream changes
- Regulatory schema inferred (knockouts, modelling)
- Can we use ChIP-Seq to more directly **observe** regulatory events?

Agenda

- Differential ER binding in breast cancer: Overview of results
 - Identification of differentially bound sites
 - Performance of prognostic signature
 - Downstream analysis (differential co-factor motifs)
- Method: Differential binding analysis
 - Occupancy analysis
 - Quantitative analysis
 - Bioconductor package: DiffBind

NATURE | LETTER

previous article next article >>

Differential oestrogen receptor binding is associated with clinical outcome in breast cancer

Caryn S. Ross-Innes, Rory Stark, Andrew E. Teschendorff, Kelly A. Holmes, H. Raza Ali, Mark J. Dunning, Gordon D. Brown, Ondrej Gojis, Ian O. Ellis, Andrew R. Green, Simak Ali, Suet-Feung Chin, Carlo Palmieri, Carlos Caldas & Jason S. Carroll

Affiliations | Contributions | Corresponding authors

Nature 481, 389–393 (19 January 2012) | doi:10.1038/nature10730 Received 19 May 2011 | Accepted 23 November 2011 | Published online 04 January 2012

Functional genomics of breast cancer

•Tumors cluster into subtypes based on gene expression

•70% of tumors over-express primary prognostic marker ER

•ER+ tumors respond to hormone and/or tamoxifen treatment

•Two secondary prognostic markers: PR and HER2

 Prognostic gene expression signatures readily derivable from expression data

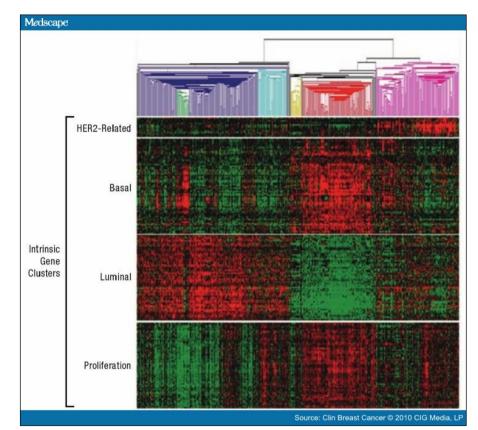


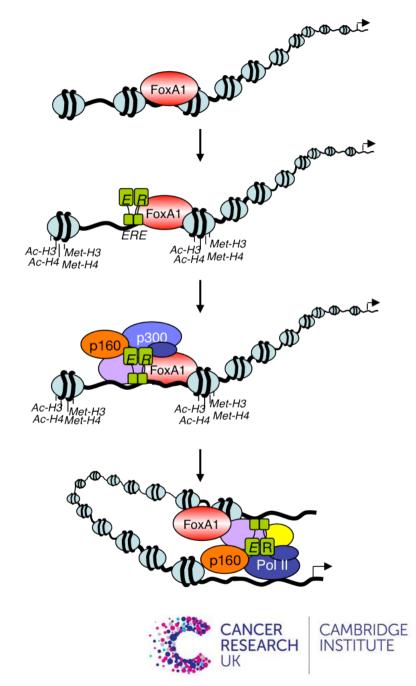
Figure 1.

Semi-Unsupervised Gene Expression Array Analysis of a Cohortof Breast Cancers Identifies Several Intrinsic SubtypesFigure

Shown are luminal A (outlined in dark blue), luminal B (pale blue), HER2-enriched (pink), basal-like (red), claudin-low (yellow), and normal-like (green) tumors. Heat map courtesy of CM Perou.

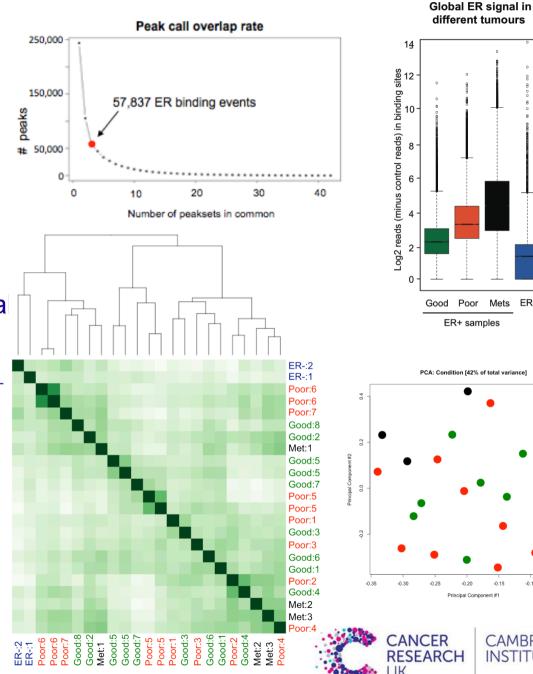
ER binding in breast cancer

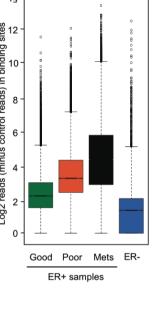
- •ER is a transcription factor
- •ERE (estrogen response element) regulatory complex
 - E2 binds ER
 - ER-E2 complexes dimerize
 - Pioneer factor (e.g. FoxA1) opens chromatin
 - ER-E2 dimers bind to DNA at ERE
 - Other TF factors co-bind at ERE
- •Most ER binding is intergenic (enhancers, not promoters)
- Evidence of DNA looping
- •Previously, all genomic ER binding data derived from a single cell line (MCF-7)



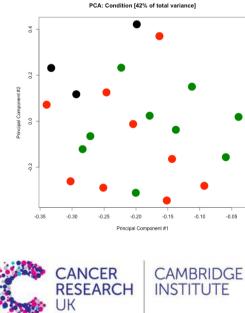
ER ChIP-seq in clinical samples

- 20 BC tumours
- •18 ER+, 2 ER-
- •15 primary, 3 metastases
- •3 sampled in replicate
- Additional controls: 3 normal breast, 2 normal liver
- •Two peak callers macs/swembl (42 peaksets)
- •Good/poor prognosis based on PR/HER2 status





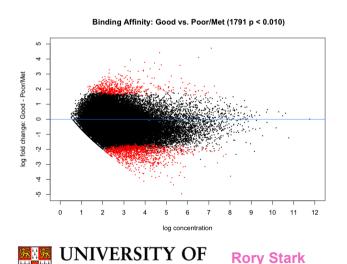
different tumours



Differentially bound sites separate tumours by prognosis

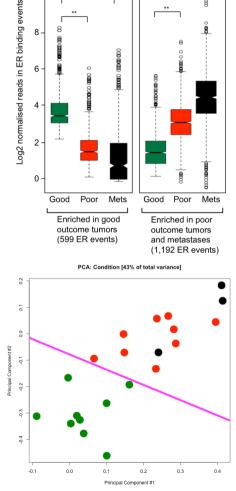
•1,791 sites identified as differentially bound between good and poor prognosis

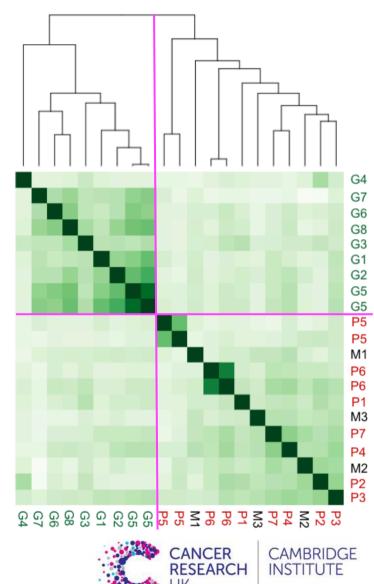
- 599 enhanced in good prognosis
- 1,192 enhanced in poor prognosis/metastases



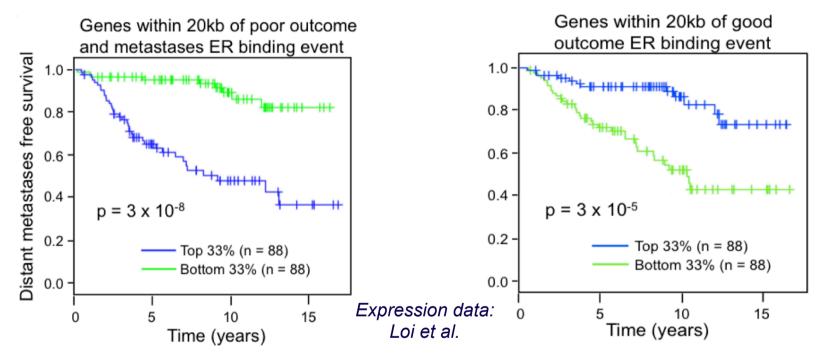
18 July 2012

CAMBRIDGE





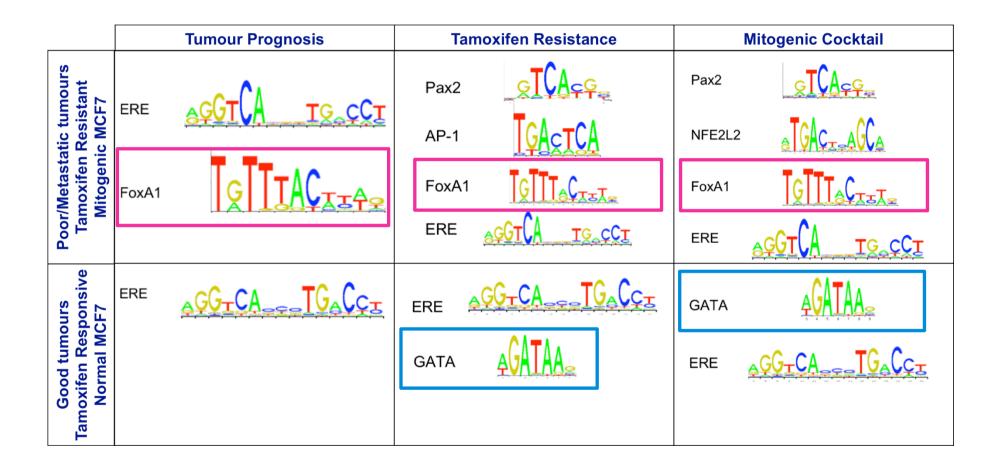
Genes near DB sites form prognostic gene signatures



- •Signature composed of genes within 20k bases of DB sites
 - 265 genes in Poor outcome signature
 - 109 genes in Good outcome signature
- •Classifier based on up/down regulation in mRNA expression sets
- •Validated in 7 publicly available BC expression datasets

UNIVERSITY OF Rory Stark CAMBRIDGE 18 July 2012

Differentially enriched co-factor motifs



Differential Binding Analysis

Differential binding analysis: Observations

- ChIP-seq is highly variable
 - [Technical]
 - Biological
 - Experimental
- Many samples involved
 - Conditions and treatments (contrasts)
 - Factors, marks, antibodies
 - Replicates required to capture variance
- Peak calling is noisy
 - Profusion of peak callers
 - Highly parametric
 - Callers have low agreement on marginal peaks which form majority

Differential binding analysis: Goals

Be robust to noise

- Noisy experiments
- Noisy peak calling

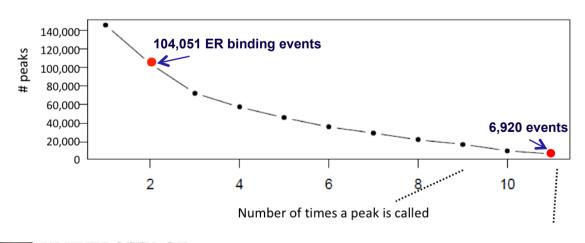
Determine DB without defining global binding maps for each ChIP

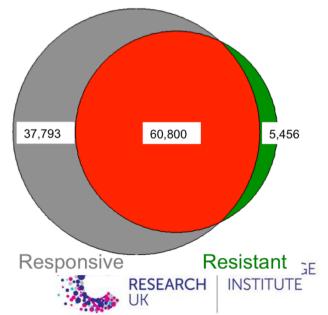
Exploit quantitative **affinity** (read scores) beyond binary **occupancy** (peak calls)

Link differential regulatory events (DB) with differential mRNA levels (DE)

Example: Occupancy (peak) analysis

11	Sample	es, 1455	586 site	es in matrix	<:	
	ID	Tissue	Factor	Condition	Replicate	Intervals
1	JC398	MCF7	ER	Responsive	1	74029
2	JC430	MCF7	ER	Responsive	2	49075
3	JC448	MCF7	ER	Responsive	3	67130
4	JC432	T47D	ER	Responsive	1	28713
5	JC439	T47D	ER	Responsive	2	23575
6	JC431	ZR75	ER	Responsive	1	74971
7	JC438	ZR75	ER	Responsive	2	70560
8	JC403	BT474	ER	Resistant	1	41924
9	JC381	BT474	ER	Resistant	2	40783
10	JC511	TAMR	ER	Resistant	1	47023
11	JC510	TAMR	ER	Resistant	2	52517





Binding affinity matrix

- 1. Rows: decide interval (binding site) "universe"
 - Peak callers -> occupancy/overlaps
 - High-confidence sites (stringent)
 - All potential sites (lenient)
 - Genomic intervals
 - Promoters
 - Windows
- 2. Columns: count and normalize reads for all samples in all intervals
 - Duplicate reads
 - Controls
 - Normalization

Differential binding analysis

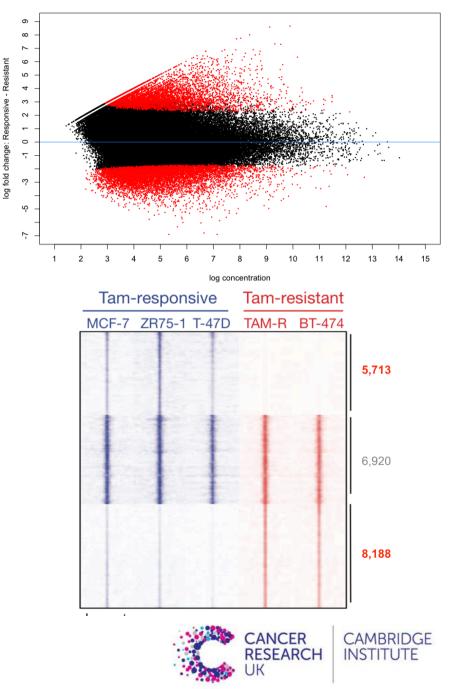
- **Determine contrasts** 1.
 - Single-factor
 - Multi-factor (GLM/blocking)

Responsi

- Matched tumour-normal
- Common tissue
- Replicate groups (batch)

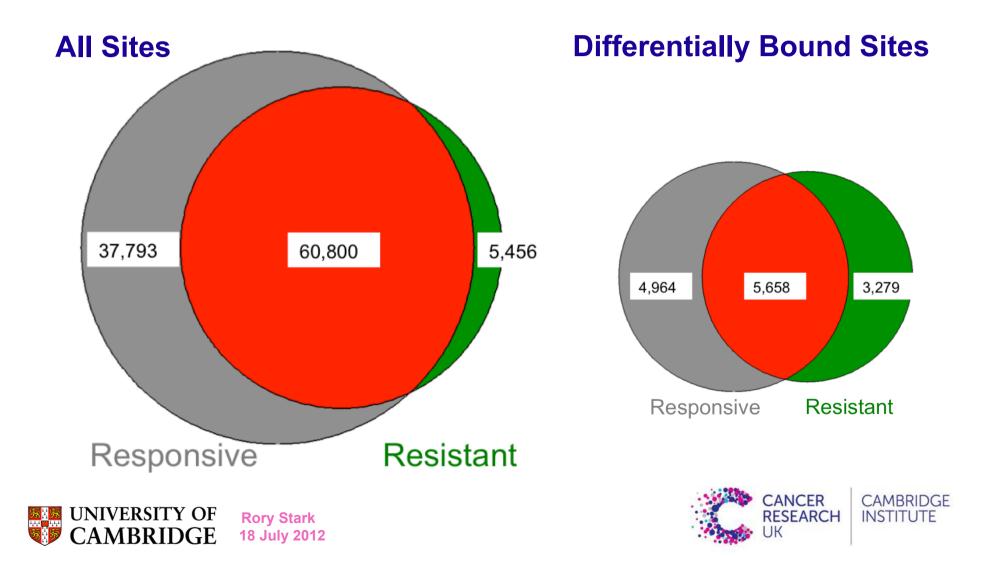
2. Run RNA-Seq DE package

- edgeR, DESeq, etc.
- Fit negative binomial distribution
- Exact test
- Multiple testing correction (B&H FDR)



Binding Affinity: Responsive vs. Resistant (13901 FDR < 0.100)

Differential binding analysis: Occupancy vs. Affinity



R/Bioconductor package -- DiffBind

dba	Construct a DBA object		
dba.peakset	Add a peakset to a DBA object		
dba.overlap	Compute binding site overlaps		
dba.count	Count reads in binding sites		
dba.contrast	Establish contrast(s) for analysis		
dba.analyze	Execute differential binding analysis		
dba.report	Generate report for a contrast analysis		
dba.plotHeatmap	Heatmap plots (correlation/affinity)		
dba.plotPCA	Principal Components Analysis plot		
dba.plotMA	MA/scatter plot		
dba.plotBox	Boxplot		
dba.plotVenn	Venn diagram plot of overlaps		

- > tamoxifen = dba(sampleSheet="tamoxifen.csv")
- > tamoxifen = dba.count(tamoxifen)
- > tamoxifen = dba.contrast(tamoxifen, categories=DBA_CONDITION)
- > tamoxifen = dba.analyze(tamoxifen)
- > tamoxifen.DB = dba.report(tamoxifen)

Functional analysis of genome-scale regulatory data

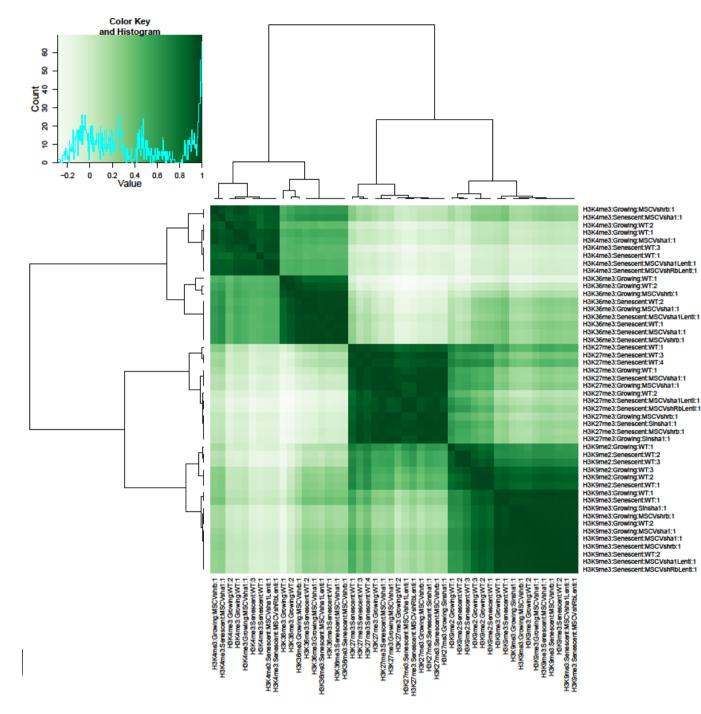
- Focus primarily on differential *expression* limits ability to identify upstream/driver genes
- Direct study of differential *regulation* should result in gene signatures enriched for upstream events
- Categorization of differentially regulated genes helps identify co-regulators
- These analysis techniques can be applied to epigenomic regulatory data

Hands-on workshop Friday @ 1PM

Thanks to:

- Cancer Research UK (CRUK)
- Gordon Brown
 - **CRI Bioinformatics Core**
 - Matthew Eldridge
 - Thomas Carroll
 - Jason Carroll and his laboratory
 - Caryn Ross-Innes
 - Vasiliki Therodorou

Rory Stark 18 July 2013



Histone marks

- H3K4me3
- H3K36me3
- H3K9me2
- H3K9me3
- H3K27me3
- Conditions:
 - Growing vs. Senescent
- Treatment:
- WT vs. treated
- Replicates:
 - 1-3 for each mark/condition/ treatment
 - "Peaks":
 - Windows around TSSs (-1000, +4000)

