Computational analyses of high-throughput spatial proteomics data

L. Gatto, L. Breckels and K.S. Lilley
University of Cambridge

18 July 2013

Spatial／organelle proteomics－Why

Image from Wikipedia http：／／en．wikipedia．org／wiki／Cell＿（biology）．

Spatial proteomicse Why

Nuclear envelope

Nucleus

- Meet interaction partners and functional conditions.
- Knowing where a protein resides helps to study its function.

Pasnassigning proteins with known function to organelles helps to refine our understanding of these organelles.
Disruption of the targeting/trafficking process alters proper

> E smooth sub-cellular localisation, which in turn perturb the cellular functions of the proteins.

- Abnormal protein localisation leading to the loss of functional effects in diseases Laurila and Vihinen (2009)
- Mis-localisation of nuclear/cytoplasmic transport have been detected in many types of carcinoma cells Kau et al. (2004).

Spatial proteomics - How, experimentally

From Gatto et al. (2010).

Computationally

Stating the problem from a computational point of view.

	Fraction $_{1}$	Fraction $_{2}$	\ldots	Fraction $_{\mathrm{m}}$	markers
p_{1}	$\mathrm{q}_{1,1}$	$\mathrm{q}_{1,2}$	\ldots	$\mathrm{q}_{1, \mathrm{~m}}$	loc $_{1}$
p_{2}	$\mathrm{q}_{2,1}$	$\mathrm{q}_{2,2}$	\ldots	$\mathrm{q}_{2, \mathrm{~m}}$	loc_{2}
p_{3}	$\mathrm{q}_{3,1}$	$\mathrm{q}_{3,2}$	\ldots	$\mathrm{q}_{3, \mathrm{~m}}$	
p_{4}	$\mathrm{q}_{4,1}$	$\mathrm{q}_{4,2}$	\ldots	$\mathrm{q}_{4, \mathrm{~m}}$	loc_{1}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
p_{i}	$\mathrm{q}_{\mathrm{i}, 1}$	$\mathrm{q}_{\mathrm{i}, 2}$	\ldots	$\mathrm{q}_{\mathrm{i}, \mathrm{m}}$	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
p_{n}	$\mathrm{q}_{\mathrm{n}, 1}$	$\mathrm{q}_{\mathrm{n}, 2}$	\ldots	$\mathrm{q}_{\mathrm{n}, \mathrm{m}}$	loc $_{\mathrm{k}}$

Visually

From Gatto et al. (2010), data from Dunkley et al. (2006)

Then

Data as presented in Tan et al. (2009)

Then and now

Data as presented in Tan et al. (2009)

Augmented marker set using novelty detection from (Breckels et al., 2013) and class-weighted svm with classifier posterior probabilities.

Dry approaches

Using sorting signals or protein domains, gene ontology terms, sequence features (Chou, 2001) or combinations of the these.

- free/cheap vs. expensive
- abundant (full proteome, 25000 entries) vs. targeted (500-2000 proteins)
- low vs. high quality

Dry approaches

Using sorting signals or protein domains, gene ontology terms, sequence features (Chou, 2001) or combinations of the these.

- free/cheap vs. expensive
- abundant (full proteome, 25000 entries) vs. targeted (500 - 2000 proteins)
- low vs. high quality
- static vs. dynamic

Getting the best out of each data source

- Data fusion: good for (high quality) exp data only (Trotter et al., 2010) but highly detrimental when fusing high and low quality data.
- A Weight Adjusted Voting classification Ensemble (Kim et al., 2011): Iteratively assigns weights to each classifier (i.e. each source of information) in the ensemble and another weight vector for all instances
- LOPIT ($\mathrm{n} \times 16$ matrix)

	M1F1A	M1F4A	M2F8B	M2F11B
AT1G03860	0.112143	0.192714	0.3215	0.4205
AT1G07810	0.275000	0.276000	0.2385	0.2025
AT1G08660	0.038800	0.252200	0.3374	0.2802

- Gene Ontology - Molecular Function ($n \times 293$)
- Gene Ontology - Cellular Component ($n \times 115$)
GO:0005783 GO:0005739 GO:0010008 GO:0033178
- Amino acid sequence - Pseudo amino acid code ($n \times 50$)

	PAAC1	PAAC2	PAAC49	PAAC50
AT1G03860	7.87424	4.921400	0.02474136	0.02536978
AT1G07810	21.61686	11.742490	0.02435662	0.02451319
AT1G08660	6.51358	8.443529	0.02651188	0.02496825

Classifier weights

	p_weight
LOPIT	0.46988507
PAAC	0.09459885
GO.CC	0.33377615
GO.MF	0.10173993

Example weights

q_weight
AT1G03860 0.008799044
AT1G07810 0.008799044
AT1G08660 0.000000000
AT1G09210 0.012049173
AT5G66680 0.000000000
AT5G67500 0.000000000

Accuracy

LOPIT PAAC GO.CC GO.MF MAJ.VOTE WAVE
Dunkley (2006) $0.9450 .4590 .8240 .482 \quad 0.9150 .934$

Tan (2009)	0.885	0.344	0.550	0.402	0.785	0.880

Andy (HEK293) $0.827 \quad 0.300 \quad 0.723 \quad 0.325 \quad 0.712 \quad 0.815$

Software

Infrastructure: MSnbase, ML: pRoloc and data: pRolocdata.

References

Breckels, L. M. et al. (2013). The effect of organelle discovery upon sub-cellular protein localisation. J Proteomics.
Chou, K. C. (2001). Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 43(3), 246-55.
Dunkley, T. et al. (2006). Mapping the arabidopsis organelle proteome. Proc Natl Acad Sci USA, 103(17), 6518-6523.

Gatto, L. et al. (2010). Organelle proteomics experimental designs and analysis. Proteomics.
Kau, T. R. et al. (2004). Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer, 4(2), 106-17.

Kim, H. et al. (2011). A weight-adjusted voting algorithm for ensembles of classifiers. Journal of the Korean Statistical Society, 40(4), 437 - 449.
Laurila, K. et al. (2009). Prediction of disease-related mutations affecting protein localization. BMC Genomics, 10, 122.

Tan, D. J. et al. (2009). Mapping organelle proteins and protein complexes in drosophila melanogaster. J Proteome Res, 8(6), 2667-78.
Trotter, M. et al. (2010). Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions. PROTEOMICS, 10(23), 4213-4219.

Acknowledgements

解

明

iㅛ

AR + Q

- Kathryn Lilley and Campridge Centre for Proteomics
- Eisa Breckels (phenoDiscoodata fusion)
- Those that produce the acfual data
= Funding PRIME-XS FP7 and BBSRC

Thank you for your attention.

