
High-level S4 containers for HTS data

Hervé Pagès

Fred Hutchinson Cancer Research Center

27-28 February 2012



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



High-level vs low-level

High-level containers for HTS data covered in this presentation (all defined in the
GenomicRanges package):

I GRanges

I GRangesList

I GappedAlignments

Other high-level containers for HTS data:

I SummarizedExperiment (GenomicRanges package)

I ShortRead , AlignedRead (ShortRead package)

100+ low-level containers. Most of them defined in the IRanges package. Most
frequently seen:

I Defined in the IRanges package: Rle, IRanges, CharacterList, IntegerList,
RleList, RleViews, RleViewsList, IRangesList (not covered in this presentation),
DataFrame.

I Defined in the Biostrings package (not covered in this presentation): DNAString ,
DNAStringSet.



About the implementation

S4 classes (aka formal classes) –> relies heavily on the methods package.

Current implementation tries to provide an API that is as consistent as possible. In
particular:

I The end-user should never need to use new(): a constructor, named as the
container, is provided for each container. E.g. GRanges().

I The end-user should never need to use @ (aka direct slot access): slot accessors
(getters and setters) are provided for each container. Not all getters have a
corresponding setter!

I Standard functions/operators like length(), names(), [, c(), [[, $, etc... work
almost everywhere and behave “as expected”.

I Additional functions that work almost everywhere: elementMetadata(),
elementLengths(), seqinfo(), etc...

I Consistent display (show methods).



Basic operations

Vector operations:

I Single-bracket subsetting: [

I Combining: c()

I Comparing: ==, !=, duplicated(), unique()

I Ordering: <=, >=, <, >, order(), sort(), rank()

List operations:

I Double-bracket subsetting: [[

I elementLengths(), unlist(), relist()

I endoapply()

I mendoapply() (not covered in this presentation)



Basic operations (continued)

Ranges operations:

I shift(), narrow(), resize(), flank()

I disjoin()

I range(), reduce(), gaps()

I union(), intersect(), setdiff()

I punion(), pintersect(), psetdiff(), pgap()

Coercion methods: as() and all the S3 forms (as.vector(), as.character(),
as.factor(), etc...)

Splitting: split()



Advanced operations

I Coverage and slicing: coverage() and slice()

I Finding/counting overlaps: findOverlaps() and countOverlaps()

I and more...



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Rle objects

Rle: Run Length Encoding

Supported basic operations:

I Vector operations: YES

I List operations: NO

I Ranges operations: NO

I Coercion methods: YES (to atomic vector, factor, or IRanges)

I Splitting: YES (produces an RleList object)



Rle objects (continued)

> library(IRanges)
> set.seed(2012)
> rle1 <- Rle(sample(c(-0.9, 0), 20, replace=TRUE))
> rle1

'numeric' Rle of length 20 with 12 runs
Lengths: 1 1 1 7 1 1 1 2 1 1 2 1
Values : -0.9 0 -0.9 0 -0.9 0 -0.9 0 -0.9 0 -0.9 0

> runLength(rle1)

[1] 1 1 1 7 1 1 1 2 1 1 2 1

> runValue(rle1)

[1] -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0

> as.vector(rle1)

[1] -0.9 0.0 -0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.9 0.0 -0.9 0.0 0.0
[16] -0.9 0.0 -0.9 -0.9 0.0

> rle1[c(TRUE, FALSE)]

'numeric' Rle of length 10 with 5 runs
Lengths: 2 3 2 2 1
Values : -0.9 0 -0.9 0 -0.9



Rle objects (continued)

> sort(rle1)

'numeric' Rle of length 20 with 2 runs
Lengths: 7 13
Values : -0.9 0

> rle1 * 50.1

'numeric' Rle of length 20 with 12 runs
Lengths: 1 1 1 7 1 ... 1 1 2 1
Values : -45.09 0 -45.09 0 -45.09 ... -45.09 0 -45.09 0

> sum(rle1)

[1] -6.3

> cumsum(rle1)

'numeric' Rle of length 20 with 7 runs
Lengths: 2 8 2 3 2 1 2
Values : -0.9 -1.8 -2.7 -3.6 -4.5 -5.4 -6.3

> cumsum(rle1) <= -4.2

'logical' Rle of length 20 with 2 runs
Lengths: 15 5
Values : FALSE TRUE

> rle1[cumsum(rle1) <= -4.2]

'numeric' Rle of length 5 with 4 runs
Lengths: 1 1 2 1
Values : -0.9 0 -0.9 0



Rle objects (continued)

> rle2 <- Rle(c("ch1", "chMT", "ch1", "ch2", "chMT"), c(4, 2, 1, 5, 1))
> rle2

'character' Rle of length 13 with 5 runs
Lengths: 4 2 1 5 1
Values : "ch1" "chMT" "ch1" "ch2" "chMT"

> as.vector(rle2)

[1] "ch1" "ch1" "ch1" "ch1" "chMT" "chMT" "ch1" "ch2" "ch2" "ch2" "ch2"
[12] "ch2" "chMT"

> c(rle2, c("chMT", "chX"))

'character' Rle of length 15 with 6 runs
Lengths: 4 2 1 5 2 1
Values : "ch1" "chMT" "ch1" "ch2" "chMT" "chX"



Rle objects (continued)

> runValue(rle2) <- factor(runValue(rle2))
> rle2

'factor' Rle of length 13 with 5 runs
Lengths: 4 2 1 5 1
Values : ch1 chMT ch1 ch2 chMT

Levels(3): ch1 ch2 chMT

> runValue(rle2)

[1] ch1 chMT ch1 ch2 chMT
Levels: ch1 ch2 chMT

> as.vector(rle2)

[1] "ch1" "ch1" "ch1" "ch1" "chMT" "chMT" "ch1" "ch2" "ch2" "ch2" "ch2"
[12] "ch2" "chMT"

> as.factor(rle2)

[1] ch1 ch1 ch1 ch1 chMT chMT ch1 ch2 ch2 ch2 ch2 ch2 chMT
Levels: ch1 ch2 chMT



Rle objects (continued)

> rle1 == 0

'logical' Rle of length 20 with 12 runs
Lengths: 1 1 1 7 1 1 1 2 1 1 2 1
Values : FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

> as(rle1 == 0, "IRanges")

IRanges of length 6
start end width

[1] 2 2 1
[2] 4 10 7
[3] 12 12 1
[4] 14 15 2
[5] 17 17 1
[6] 20 20 1



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



The purpose of the IRanges container is...

... to store a set of integer ranges (aka integer intervals).

I Each range can be defined by a start and an end value: both are included in the
interval (except when the range is empty).

I The width of the range is the number of integer values in it: width = end - start
+ 1.

I end is always >= start, except for empty ranges where end = start - 1.

Supported basic operations:

I Vector operations: YES

I List operations: YES (not covered in this presentation)

I Ranges operations: YES

I Coercion methods: YES (from logical or integer vector to IRanges)

I Splitting: YES (produces an IRangesList object)



IRanges objects (continued)

> ir1 <- IRanges(start=c(12, -9, NA, 12),
+ end=c(NA, 0, 15, NA),
+ width=c(4, NA, 4, 3))
> ir1 # "show" method not yet consistent with the other "show" methods (TODO)

IRanges of length 4
start end width

[1] 12 15 4
[2] -9 0 10
[3] 12 15 4
[4] 12 14 3

> start(ir1)

[1] 12 -9 12 12

> end(ir1)

[1] 15 0 15 14

> width(ir1)

[1] 4 10 4 3

> successiveIRanges(c(10, 5, 38), from=101)

IRanges of length 3
start end width

[1] 101 110 10
[2] 111 115 5
[3] 116 153 38



IRanges objects (continued)

> ir1[-2]

IRanges of length 3
start end width

[1] 12 15 4
[2] 12 15 4
[3] 12 14 3

> ir2 <- c(ir1, IRanges(-10, 0))
> ir2

IRanges of length 5
start end width

[1] 12 15 4
[2] -9 0 10
[3] 12 15 4
[4] 12 14 3
[5] -10 0 11

> duplicated(ir2)

[1] FALSE FALSE TRUE FALSE FALSE

> sort(ir2)

IRanges of length 5
start end width

[1] -10 0 11
[2] -9 0 10
[3] 12 14 3
[4] 12 15 4
[5] 12 15 4



Ranges operations



IRanges objects (continued)

> shift(ir1, -start(ir1))

IRanges of length 4
start end width

[1] 0 3 4
[2] 0 9 10
[3] 0 3 4
[4] 0 2 3

> flank(ir1, 10, start=FALSE)

IRanges of length 4
start end width

[1] 16 25 10
[2] 1 10 10
[3] 16 25 10
[4] 15 24 10

> range(ir1)

IRanges of length 1
start end width

[1] -9 15 25

> reduce(ir1)

IRanges of length 2
start end width

[1] -9 0 10
[2] 12 15 4



IRanges objects (continued)

> union(ir1, IRanges(-2, 6))

IRanges of length 2
start end width

[1] -9 6 16
[2] 12 15 4

> intersect(ir1, IRanges(-2, 13))

IRanges of length 2
start end width

[1] -2 0 3
[2] 12 13 2

> setdiff(ir1, IRanges(-2, 13))

IRanges of length 2
start end width

[1] -9 -3 7
[2] 14 15 2



IRanges objects (continued)

> ir3 <- IRanges(5:1, width=12)
> ir3

IRanges of length 5
start end width

[1] 5 16 12
[2] 4 15 12
[3] 3 14 12
[4] 2 13 12
[5] 1 12 12

> ir2

IRanges of length 5
start end width

[1] 12 15 4
[2] -9 0 10
[3] 12 15 4
[4] 12 14 3
[5] -10 0 11

> pintersect(ir3, ir2, resolve.empty="max.start")

IRanges of length 5
start end width

[1] 12 15 4
[2] 4 3 0
[3] 12 14 3
[4] 12 13 2
[5] 1 0 0



IRanges objects (continued)

> ok <- c(FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)
> ir4 <- as(ok, "IRanges") # from logical vector to IRanges
> ir4

IRanges of length 2
start end width

[1] 3 5 3
[2] 8 8 1

> as(which(ok), "IRanges") # from integer vector to IRanges

IRanges of length 2
start end width

[1] 3 5 3
[2] 8 8 1

> rle2[ir4] # IRanges subscript

'factor' Rle of length 4 with 3 runs
Lengths: 2 1 1
Values : ch1 chMT ch2

Levels(3): ch1 ch2 chMT



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



DataFrame objects

DataFrame: An S4 version of data.frame that can hold almost anything it its columns.

Supported operations:

I All the data.frame operations. Just manipulate a DataFrame as a data.frame!

I Coercion methods: from almost anything to DataFrame, and from DataFrame to
data.frame.

I Splitting: YES (produces a SplitDataFrameList object)

> library(Biostrings)
> dna <- DNAStringSet(c("AAA", "TGGATT", "CATTNGAGC", "TAATAG"))
> af <- alphabetFrequency(dna, baseOnly=TRUE)
> df <- DataFrame(dna, af)
> df

DataFrame with 4 rows and 6 columns
dna A C G T other

<DNAStringSet> <integer> <integer> <integer> <integer> <integer>
1 AAA 3 0 0 0 0
2 TGGATT 1 0 2 3 0
3 CATTNGAGC 2 2 2 2 1
4 TAATAG 3 0 1 2 0

> df$G

[1] 0 2 2 1



DataFrame objects (continued)

> df$cds_id <- paste("CDS", 1:4, sep="")
> df$cds_range <- successiveIRanges(width(dna), from=51)
> df

DataFrame with 4 rows and 8 columns
dna A C G T other cds_id

<DNAStringSet> <integer> <integer> <integer> <integer> <integer> <character>
1 AAA 3 0 0 0 0 CDS1
2 TGGATT 1 0 2 3 0 CDS2
3 CATTNGAGC 2 2 2 2 1 CDS3
4 TAATAG 3 0 1 2 0 CDS4
cds_range
<IRanges>

1 [51, 53]
2 [54, 59]
3 [60, 68]
4 [69, 74]

> as.data.frame(df)

dna A C G T other cds_id cds_range.start cds_range.end cds_range.width
1 AAA 3 0 0 0 0 CDS1 51 53 3
2 TGGATT 1 0 2 3 0 CDS2 54 59 6
3 CATTNGAGC 2 2 2 2 1 CDS3 60 68 9
4 TAATAG 3 0 1 2 0 CDS4 69 74 6



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



CharacterList objects

An S4 virtual class for representing a list of character vectors.

Exists in 2 flavors (i.e. 2 different internal representations):

I CompressedCharacterList

I SimpleCharacterList

> ccl <- CharacterList(one=c("aaa", "bb", "c"),
+ two=c("dd", "e", "fff", "gggg"))
> ccl

CompressedCharacterList of length 2
[["one"]] aaa bb c
[["two"]] dd e fff gggg

> length(ccl)

[1] 2

> as.list(ccl)

$one
[1] "aaa" "bb" "c"

$two
[1] "dd" "e" "fff" "gggg"

> ccl[[2]]

[1] "dd" "e" "fff" "gggg"



CharacterList objects (continued)

> toupper(ccl)

CompressedCharacterList of length 2
[["one"]] AAA BB C
[["two"]] DD E FFF GGGG

> elementLengths(ccl)

one two
3 4

> unlist(ccl) # insane! will be changed soon...

one one1 one2 two two1 two2 two3
"aaa" "bb" "c" "dd" "e" "fff" "gggg"

> unlist(ccl, use.names=FALSE)

[1] "aaa" "bb" "c" "dd" "e" "fff" "gggg"



IntegerList objects

An S4 virtual class for representing a list of integer vectors.

Exists in 2 flavors (i.e. 2 different internal representations):

I CompressedIntegerList

I SimpleIntegerList

> cil <- IntegerList(6:-2, 5, integer(0), 14:21)
> cil

CompressedIntegerList of length 4
[[1]] 6 5 4 3 2 1 0 -1 -2
[[2]] 5
[[3]] integer(0)
[[4]] 14 15 16 17 18 19 20 21

> cil * cil

CompressedIntegerList of length 4
[[1]] 36 25 16 9 4 1 0 1 4
[[2]] 25
[[3]] integer(0)
[[4]] 196 225 256 289 324 361 400 441



IntegerList objects (continued)

2 different ways to obtain the same result:

> cil * 100L - 2L

CompressedIntegerList of length 4
[[1]] 598 498 398 298 198 98 -2 -102 -202
[[2]] 498
[[3]] integer(0)
[[4]] 1398 1498 1598 1698 1798 1898 1998 2098

> relist(unlist(cil) * 100L - 2L, cil)

CompressedIntegerList of length 4
[[1]] 598 498 398 298 198 98 -2 -102 -202
[[2]] 498
[[3]] integer(0)
[[4]] 1398 1498 1598 1698 1798 1898 1998 2098

The above trick would not work here!

> cumsum(cil)

CompressedNumericList of length 4
[[1]] 6 11 15 18 20 21 21 20 18
[[2]] 5
[[3]] numeric(0)
[[4]] 14 29 45 62 80 99 119 140



RleList, RleViews and RleViewsList objects

Typically seen when doing Coverage and slicing.

RleList: An S4 virtual class for representing a list of Rle objects. Exists in 2 flavors
(i.e. 2 different internal representations):

I CompressedRleList

I SimpleRleList

RleViews: An S4 class for representing a set of views (i.e. ranges) defined on an Rle
subject.

RleViewsList: An S4 virtual class for representing a list of RleViews objects. Exists
only in 1 flavor: SimpleRleViewsList.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



The purpose of the GRanges container is...

... to store a set of genomic ranges (aka genomic regions or genomic intervals).

I Like for IRanges objects, each range can be defined by a start and an end value.

I start and end are both 1-based positions relative to the 5’ end of the plus strand
of the chromosome (aka reference sequence), even when the range is on the
minus strand.

I The start is the leftmost position and the end is the rightmost, even when the
range is on the minus strand.

I Each range is assigned a chromosome name and a strand.

Supported basic operations:

I Vector operations: YES

I List operations: NO

I Ranges operations: YES

I Coercion methods: to RangedData or IRangesList (both not covered in this
presentation)

I Splitting: YES (produces a GRangesList object)



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



GRanges constructor

> library(GenomicRanges)
> gr1 <- GRanges(seqnames=rep(c("ch1", "chMT"), c(2, 4)),
+ ranges=IRanges(start=16:21, end=20),
+ strand=rep(c("+", "-", "*"), 2))
> gr1

GRanges with 6 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [16, 20] +
[2] ch1 [17, 20] -
[3] chMT [18, 20] *
[4] chMT [19, 20] +
[5] chMT [20, 20] -
[6] chMT [21, 20] *
---
seqlengths:
ch1 chMT
NA NA



GRanges accessors

> length(gr1)

[1] 6

> seqnames(gr1)

'factor' Rle of length 6 with 2 runs
Lengths: 2 4
Values : ch1 chMT

Levels(2): ch1 chMT

> ranges(gr1)

IRanges of length 6
start end width

[1] 16 20 5
[2] 17 20 4
[3] 18 20 3
[4] 19 20 2
[5] 20 20 1
[6] 21 20 0



GRanges accessors (continued)

> start(gr1)

[1] 16 17 18 19 20 21

> end(gr1)

[1] 20 20 20 20 20 20

> width(gr1)

[1] 5 4 3 2 1 0

> strand(gr1)

'factor' Rle of length 6 with 6 runs
Lengths: 1 1 1 1 1 1
Values : + - * + - *

Levels(3): + - *

> strand(gr1) <- c("-", "-", "+")
> strand(gr1)

'factor' Rle of length 6 with 4 runs
Lengths: 2 1 2 1
Values : - + - +

Levels(3): + - *



GRanges accessors (continued)
> names(gr1) <- LETTERS[1:6]
> names(gr1)

[1] "A" "B" "C" "D" "E" "F"

> elementMetadata(gr1) <- DataFrame(score=11:16, GC=seq(1, 0, length=6))
> elementMetadata(gr1)

DataFrame with 6 rows and 2 columns
score GC

<integer> <numeric>
1 11 1.0
2 12 0.8
3 13 0.6
4 14 0.4
5 15 0.2
6 16 0.0

> gr1

GRanges with 6 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
E chMT [20, 20] - | 15 0.2
F chMT [21, 20] + | 16 0
---
seqlengths:
ch1 chMT
NA NA



GRanges accessors (continued)

> seqinfo(gr1)

Seqinfo of length 2
seqnames seqlengths isCircular genome
ch1 NA NA <NA>
chMT NA NA <NA>

> seqlevels(gr1)

[1] "ch1" "chMT"

> seqlengths(gr1)

ch1 chMT
NA NA

> seqlengths(gr1) <- c(50000, 800)
> seqlengths(gr1)

ch1 chMT
50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Vector operations on GRanges objects

> gr1[c("F", "A")]

GRanges with 2 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
F chMT [21, 20] + | 16 0
A ch1 [16, 20] - | 11 1
---
seqlengths:

ch1 chMT
50000 800

> gr1[strand(gr1) == "+"]

GRanges with 2 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Vector operations on GRanges objects (continued)

> gr1 <- gr1[-5]
> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Vector operations on GRanges objects (continued)

> gr2 <- GRanges(seqnames="ch2",
+ ranges=IRanges(start=c(2:1,2), width=6),
+ score=15:13,
+ GC=seq(0, 0.4, length=3))
> gr12 <- c(gr1, gr2)
> gr12

GRanges with 8 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

ch2 [ 2, 7] * | 15 0
ch2 [ 1, 6] * | 14 0.2
ch2 [ 2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRanges objects (continued)

> gr12[length(gr12)] == gr12

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> duplicated(gr12)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> unique(gr12)

GRanges with 7 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
6 ch2 [ 2, 7] * | 15 0
7 ch2 [ 1, 6] * | 14 0.2
---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRanges objects (continued)

> sort(gr12)

GRanges with 8 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0
D chMT [19, 20] - | 14 0.4
6 ch2 [ 1, 6] * | 14 0.2
7 ch2 [ 2, 7] * | 15 0
8 ch2 [ 2, 7] * | 13 0.4
---
seqlengths:

ch1 chMT ch2
50000 800 NA



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Ranges operations on GRanges objects

> gr2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [2, 7] * | 15 0

[2] ch2 [1, 6] * | 14 0.2

[3] ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch2

NA

> shift(gr2, 50)

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [52, 57] * | 15 0

[2] ch2 [51, 56] * | 14 0.2

[3] ch2 [52, 57] * | 13 0.4

---

seqlengths:

ch2

NA

> narrow(gr2, start=2, end=-2)

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [3, 6] * | 15 0

[2] ch2 [2, 5] * | 14 0.2

[3] ch2 [3, 6] * | 13 0.4

---

seqlengths:

ch2

NA



Ranges operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> resize(gr1, 12)

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [ 9, 20] - | 11 1
B ch1 [ 9, 20] - | 12 0.8
C chMT [18, 29] + | 13 0.6
D chMT [ 9, 20] - | 14 0.4
F chMT [21, 32] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> flank(gr1, 3)

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [21, 23] - | 11 1
B ch1 [21, 23] - | 12 0.8
C chMT [15, 17] + | 13 0.6
D chMT [21, 23] - | 14 0.4
F chMT [18, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3 <- shift(gr1, c(35000, rep(0, 3), 100))
> width(gr3)[c(3,5)] <- 117
> gr3

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> range(gr3)

GRanges with 3 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [17, 35020] -
[2] chMT [18, 236] +
[3] chMT [19, 20] -
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> disjoin(gr3)

GRanges with 6 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [ 17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [ 18, 119] +
[4] chMT [ 120, 134] +
[5] chMT [ 135, 236] +
[6] chMT [ 19, 20] -
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> reduce(gr3)

GRanges with 4 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [ 17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [ 18, 236] +
[4] chMT [ 19, 20] -
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

---

seqlengths:

ch1 chMT

50000 800

> gaps(gr3)

GRanges with 10 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 1, 50000] +

[2] ch1 [ 1, 16] -

[3] ch1 [ 21, 35015] -

[4] ch1 [35021, 50000] -

[5] ch1 [ 1, 50000] *

[6] chMT [ 1, 17] +

[7] chMT [ 237, 800] +

[8] chMT [ 1, 18] -

[9] chMT [ 21, 800] -

[10] chMT [ 1, 800] *

---

seqlengths:

ch1 chMT

50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Splitting a GRanges object

> split(gr3, seqnames(gr3))

GRangesList of length 2:
$ch1
GRanges with 2 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8

$chMT
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [120, 236] + | 16 0

---
seqlengths:

ch1 chMT
50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



The purpose of the GRangesList container is...

... to store a list of compatible GRanges objects.

compatible means:

I they are relative to the same genome,

I AND they have the same columns in their elementMetadata slot.

Supported basic operations:

I Vector operations: partially supported (no comparing or ordering)

I List operations: YES

I Ranges operations: partially supported (some operations like disjoin() or gaps()

are missing but they could/will be added)

I Coercion methods: to IRangesList (not covered in this presentation)

I Splitting: NO



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



GRangesList constructor

> grl <- GRangesList(gr3, gr2)
> grl

GRangesList of length 2:
[[1]]
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

[[2]]
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



GRangesList accessors
> length(grl)

[1] 2

> seqnames(grl)

CompressedRleList of length 2
[[1]]
'factor' Rle of length 5 with 2 runs

Lengths: 2 3
Values : ch1 chMT

Levels(3): ch1 chMT ch2

[[2]]
'factor' Rle of length 3 with 1 run
Lengths: 3
Values : ch2

Levels(3): ch1 chMT ch2

> strand(grl)

CompressedRleList of length 2
[[1]]
'factor' Rle of length 5 with 4 runs
Lengths: 2 1 1 1
Values : - + - +

Levels(3): + - *

[[2]]
'factor' Rle of length 3 with 1 run
Lengths: 3
Values : *

Levels(3): + - *



GRangesList accessors (continued)

> ranges(grl)

CompressedIRangesList of length 2
[[1]]
IRanges of length 5

start end width names
[1] 35016 35020 5 A
[2] 17 20 4 B
[3] 18 134 117 C
[4] 19 20 2 D
[5] 120 236 117 F

[[2]]
IRanges of length 3

start end width names
[1] 2 7 6
[2] 1 6 6
[3] 2 7 6

> start(grl)

CompressedIntegerList of length 2
[[1]] 35016 17 18 19 120
[[2]] 2 1 2

> width(grl)

CompressedIntegerList of length 2
[[1]] 5 4 117 2 117
[[2]] 6 6 6



GRangesList accessors (continued)

> names(grl) <- c("TX1", "TX2")
> grl

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



GRangesList accessors (continued)

> elementMetadata(grl)$geneid <- c("GENE1", "GENE2")

> elementMetadata(grl)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



GRangesList accessors (continued)

> seqinfo(grl)

Seqinfo of length 3
seqnames seqlengths isCircular genome
ch1 50000 NA <NA>
chMT 800 NA <NA>
ch2 NA NA <NA>



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Vector operations on GRangesList objects

> grl[c("TX2", "TX1")]

GRangesList of length 2:
$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRangesList objects (continued)

> c(grl, GRangesList(gr3))

GRangesList of length 3:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

[[3]]

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



List operations on GRangesList objects

> grl[[2]]

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> elementLengths(grl)

TX1 TX2

5 3

> unlisted <- unlist(grl, use.names=FALSE) # same as c(grl[[1]], grl[[2]])

> unlisted

GRanges with 8 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

ch2 [ 2, 7] * | 15 0

ch2 [ 1, 6] * | 14 0.2

ch2 [ 2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



List operations on GRangesList objects (continued)

> grl100 <- relist(shift(unlisted, 100), grl)
> grl100

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1
B ch1 [ 117, 120] - | 12 0.8
C chMT [ 118, 234] + | 13 0.6
D chMT [ 119, 120] - | 14 0.4
F chMT [ 220, 336] + | 16 0

$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [102, 107] * | 15 0
2 ch2 [101, 106] * | 14 0.2
3 ch2 [102, 107] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



List operations on GRangesList objects (continued)

> grl100b <- endoapply(grl, shift, 100)

> grl100b

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [ 117, 120] - | 12 0.8

C chMT [ 118, 234] + | 13 0.6

D chMT [ 119, 120] - | 14 0.4

F chMT [ 220, 336] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [102, 107] * | 15 0

2 ch2 [101, 106] * | 14 0.2

3 ch2 [102, 107] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> elementMetadata(grl100)

DataFrame with 2 rows and 0 columns

> elementMetadata(grl100b)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Ranges operations on GRangesList objects
> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> shift(grl, 100) # equivalent to endoapply(grl, shift, 100)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [ 117, 120] - | 12 0.8

C chMT [ 118, 234] + | 13 0.6

D chMT [ 119, 120] - | 14 0.4

F chMT [ 220, 336] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [102, 107] * | 15 0

2 ch2 [101, 106] * | 14 0.2

3 ch2 [102, 107] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Ranges operations on GRangesList objects (continued)
> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> flank(grl, 10) # equivalent to endoapply(grl, flank, 10)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35021, 35030] - | 11 1

B ch1 [ 21, 30] - | 12 0.8

C chMT [ 8, 17] + | 13 0.6

D chMT [ 21, 30] - | 14 0.4

F chMT [ 110, 119] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [-8, 1] * | 15 0

2 ch2 [-9, 0] * | 14 0.2

3 ch2 [-8, 1] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Ranges operations on GRangesList objects (continued)
> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> range(grl) # equivalent to endoapply(grl, range)

GRangesList of length 2:

$TX1

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [17, 35020] -

[2] chMT [18, 236] +

[3] chMT [19, 20] -

$TX2

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

[1] ch2 [1, 7] *

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Ranges operations on GRangesList objects (continued)
> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> reduce(grl) # equivalent to endoapply(grl, reduce)

GRangesList of length 2:

$TX1

GRanges with 4 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 17, 20] -

[2] ch1 [35016, 35020] -

[3] chMT [ 18, 236] +

[4] chMT [ 19, 20] -

$TX2

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

[1] ch2 [1, 7] *

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Ranges operations on GRangesList objects (continued)
> grl2 <- grl; start(grl2[[1]]) <- start(grl2[[1]]) - 4:0; grl2

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35012, 35020] - | 11 1

B ch1 [ 14, 20] - | 12 0.8

C chMT [ 16, 134] + | 13 0.6

D chMT [ 18, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> psetdiff(grl2, grl) # equivalent to mendoapply(setdiff, grl2, grl)

GRangesList of length 2:

$TX1

GRanges with 4 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 14, 16] -

[2] ch1 [35012, 35015] -

[3] chMT [ 16, 17] +

[4] chMT [ 18, 18] -

$TX2

GRanges with 0 ranges and 0 elementMetadata cols:

seqnames ranges strand

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



The purpose of the GappedAlignments container is...
... to store a set of genomic alignments.

Those alignments are typically loaded from a BAM file (with readGappedAlignments()).
By default, only the following information is loaded for each alignment:

I RNAME field: name of the reference sequence to which the query is aligned.

I strand bit (from FLAG field): strand in the reference sequence to which the query
is aligned.

I CIGAR field: a string in the ”Extended CIGAR format” describing the ”gemoetry”
of the alignment (i.e. locations of insertions, deletions and gaps). See the SAM
Spec for the details.

I POS field: 1-based position of the leftmost mapped base.

In particular, the query sequences (SEQ) and qualities (QUAL) are not loaded by
default.

Supported basic operations:

I Vector operations: partially supported (no comparing or ordering)

I List operations: NO

I Ranges operations: only narrow() and qnarrow() (GappedAlignments specific) are
supported

I Coercion methods: to GRanges or GRangesList

I Splitting: NO



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



GappedAlignments constructor

Typically not used directly!

> gal0 <- GappedAlignments(rname=Rle(c("ch1", "ch2"), c(3, 1)),
+ pos=1L + 10L*0:3,
+ cigar=c("36M", "20M3D16M", "20M703N16M", "14M2I20M"),
+ strand=strand(c("+", "-", "-", "+")))
> gal0

GappedAlignments with 4 alignments and 0 elementMetadata cols:
seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>
[1] ch1 + 36M 36 1 36 36
[2] ch1 - 20M3D16M 36 11 49 39
[3] ch1 - 20M703N16M 36 21 759 739
[4] ch2 + 14M2I20M 36 31 64 34

ngap
<integer>

[1] 0
[2] 0
[3] 1
[4] 0
---
seqlengths:
ch1 ch2
NA NA

An N in the cigar indicates a gap (!= deletion).



readGappedAlignments()

> library(SeattleAdvancedWorkshop2012Data)
> gal4 <- readGappedAlignments(pathto_untreated3_chr4())
> length(gal4)

[1] 175346

> head(gal4)

GappedAlignments with 6 alignments and 0 elementMetadata cols:
seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>
[1] chr4 + 37M 37 169 205 37
[2] chr4 - 37M 37 184 220 37
[3] chr4 - 37M 37 187 223 37
[4] chr4 + 37M 37 193 229 37
[5] chr4 - 37M 37 326 362 37
[6] chr4 + 37M 37 943 979 37

ngap
<integer>

[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
[6] 0
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



GappedAlignments accessors
> seqnames(gal4)

'factor' Rle of length 175346 with 1 run
Lengths: 175346
Values : chr4

Levels(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> table(as.factor(seqnames(gal4)))

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 175346 0 0 0

> strand(gal4)

'factor' Rle of length 175346 with 37319 runs
Lengths: 1 2 1 1 3 2 3 10 3 1 4 ... 2 7 26 1 2 1 1 1 1 1 3
Values : + - + - + - + - + - + ... + - + - + - + - + - +

Levels(3): + - *

> table(as.factor(strand(gal4)))

+ - *
84871 90475 0

> head(cigar(gal4))

[1] "37M" "37M" "37M" "37M" "37M" "37M"

> head(qwidth(gal4))

[1] 37 37 37 37 37 37

> table(qwidth(gal4))

37
175346



GappedAlignments accessors (continued)

> head(start(gal4))

[1] 169 184 187 193 326 943

> head(end(gal4))

[1] 205 220 223 229 362 979

> head(width(gal4))

[1] 37 37 37 37 37 37

> head(ngap(gal4))

[1] 0 0 0 0 0 0

> table(ngap(gal4))

0 1
172529 2817

> seqinfo(gal4)

Seqinfo of length 8
seqnames seqlengths isCircular genome
chr2L 23011544 NA <NA>
chr2R 21146708 NA <NA>
chr3L 24543557 NA <NA>
chr3R 27905053 NA <NA>
chr4 1351857 NA <NA>
chrM 19517 NA <NA>
chrX 22422827 NA <NA>
chrYHet 347038 NA <NA>



Loading additional information from the BAM file

> param <- ScanBamParam(what=c("flag", "mapq"), tag=c("NH", "NM"))
> gal4 <- readGappedAlignments(pathto_untreated3_chr4(),
+ use.names=TRUE, param=param)
> head(gal4)

GappedAlignments with 6 alignments and 4 elementMetadata cols:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR031715.1138209 chr4 + 37M 37 169 205
SRR031714.776678 chr4 - 37M 37 184 220
SRR031715.3258011 chr4 - 37M 37 187 223
SRR031715.4791418 chr4 + 37M 37 193 229
SRR031715.1138209 chr4 - 37M 37 326 362
SRR031714.756385 chr4 + 37M 37 943 979

width ngap | flag mapq NH NM
<integer> <integer> | <integer> <integer> <integer> <integer>

SRR031715.1138209 37 0 | 99 <NA> 1 0
SRR031714.776678 37 0 | 153 <NA> 1 2
SRR031715.3258011 37 0 | 89 <NA> 1 1
SRR031715.4791418 37 0 | 137 <NA> 1 1
SRR031715.1138209 37 0 | 147 <NA> 1 0
SRR031714.756385 37 0 | 99 <NA> 1 0
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> any(duplicated(names(gal4)))

[1] TRUE



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Exercise I

1. Find the SAM Spec online and investigate the meaning of predefined tags NH
and NM.

2. Load BAM file untreated3 chr4.bam into a GappedAlignments object and subset
this object to keep only the alignments satisfying the 2 following conditions:

I The alignment corresponds to a query with a unique alignment (aka unique match or
unique hit).

I The alignment is a perfect match (i.e. no insertion, no deletion, no mismatch).

3. Do those alignments have gaps?



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



From GappedAlignments to GRanges
GAPS ARE IGNORED! That is, each alignment is converted into a single genomic
range defined by the start and end of the alignment.

> as(gal4, "GRanges")

GRanges with 175346 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
SRR031715.1138209 chr4 [169, 205] +
SRR031714.776678 chr4 [184, 220] -
SRR031715.3258011 chr4 [187, 223] -
SRR031715.4791418 chr4 [193, 229] +
SRR031715.1138209 chr4 [326, 362] -
SRR031714.756385 chr4 [943, 979] +
SRR031714.2355189 chr4 [944, 980] +
SRR031714.5054563 chr4 [946, 982] +
SRR031715.4533153 chr4 [946, 982] -

... ... ... ...
SRR031715.3832729 chr4 [1348349, 1348385] +
SRR031715.4873052 chr4 [1348350, 1348386] -
SRR031714.1650928 chr4 [1349196, 1349232] +
SRR031714.1650928 chr4 [1349326, 1349362] -
SRR031714.1650928 chr4 [1349708, 1349744] +
SRR031714.1650928 chr4 [1349838, 1349874] -
SRR031714.5192891 chr4 [1351640, 1351676] +
SRR031715.2351056 chr4 [1351640, 1351676] +
SRR031714.864195 chr4 [1351760, 1351796] +
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



From GappedAlignments to GRangesList

GAPS ARE NOT IGNORED! That is, each alignment is converted into one or more
genomic ranges (one more range than the number of gaps in the alignment).

> grl4 <- as(gal4, "GRangesList")
> grl4

GRangesList of length 175346:
$SRR031715.1138209
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr4 [169, 205] +

$SRR031714.776678
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [184, 220] -

$SRR031715.3258011
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [187, 223] -

...
<175343 more elements>
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



From GappedAlignments to GRangesList (continued)

One more range than the number of gaps in the alignment:

> all(elementLengths(grl4) == ngap(gal4) + 1)

[1] TRUE



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Coverage

> cvg4 <- coverage(grl4)

> cvg4

SimpleRleList of length 8

$chr2L

'integer' Rle of length 23011544 with 1 run

Lengths: 23011544

Values : 0

$chr2R

'integer' Rle of length 21146708 with 1 run

Lengths: 21146708

Values : 0

$chr3L

'integer' Rle of length 24543557 with 1 run

Lengths: 24543557

Values : 0

$chr3R

'integer' Rle of length 27905053 with 1 run

Lengths: 27905053

Values : 0

$chr4

'integer' Rle of length 1351857 with 104680 runs

Lengths: 168 15 3 6 13 15 3 ... 37 1765 37 83 37 61

Values : 0 1 2 3 4 3 2 ... 1 0 2 0 1 0

...

<3 more elements>



Coverage (continued)

> mean(cvg4)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0.000000 0.000000 0.000000 0.000000 4.799178 0.000000 0.000000 0.000000

> max(cvg4)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 7317 0 0 0



Slicing the coverage

> sl4 <- slice(cvg4, lower=10)
> sl4

SimpleRleViewsList of length 8
names(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> elementLengths(sl4)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 2322 0 0 0

> head(sl4$chr4)

Views on a 1351857-length Rle subject

views:
start end width

[1] 5968 6004 37 [12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 ...]
[2] 6607 6634 28 [10 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 ...]
[3] 6790 6868 79 [14 13 13 13 13 20 20 22 23 23 24 26 26 25 28 28 29 29 ...]
[4] 6874 6874 1 [10]
[5] 6917 6917 1 [10]
[6] 6920 6939 20 [10 10 10 11 11 11 11 11 11 10 10 10 11 11 11 11 11 11 ...]

> head(mean(sl4$chr4))

[1] 13.40541 11.00000 21.65823 10.00000 10.00000 10.70000

> head(max(sl4$chr4))

[1] 15 12 37 10 10 11



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Finding/counting overlaps

A typical use case: count the number of hits (aka overlaps) per transcript.

Typical input:

I A BAM file with the aligned reads.

I Transcript annotations for the same reference genome that was used to align the
reads.

Typical tools:

I The readGappedAlignments() function to load the reads in a GappedAlignments
object.

I A TranscriptDb object containing the transcript annotations.

I The exonBy() extractor (defined in the GenomicFeatures package) to extract the
exons ranges grouped by transcript from the TranscriptDb object. The exons
ranges are returned in a GRangesList object with 1 top-level element per
transcript.

I The findOverlaps() and/or countOverlaps() functions.



Finding/counting overlaps (continued)

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> exbytx <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, by="tx", use.names=TRUE)
> exbytx

GRangesList of length 23017:
$FBtr0089116
GRanges with 11 ranges and 3 elementMetadata cols:

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr4 [251356, 251521] + | 1 <NA> 1
[2] chr4 [252561, 252603] + | 2 <NA> 2
[3] chr4 [252905, 253474] + | 3 <NA> 3
[4] chr4 [254891, 254971] + | 4 <NA> 4
[5] chr4 [255490, 255570] + | 5 <NA> 5
[6] chr4 [257021, 257101] + | 6 <NA> 6
[7] chr4 [257895, 258185] + | 7 <NA> 7
[8] chr4 [260940, 261024] + | 8 <NA> 8
[9] chr4 [263892, 264211] + | 9 <NA> 9
[10] chr4 [264260, 264374] + | 10 <NA> 10
[11] chr4 [265806, 266500] + | 11 <NA> 11

...
<23016 more elements>
---
seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM
23011544 368872 21146708 3288761 ... 204112 347038 19517



Finding/counting overlaps (continued)

> txhits <- countOverlaps(exbytx, grl4)
> length(txhits)

[1] 23017

> head(txhits)

FBtr0089116 FBtr0300800 FBtr0300796 FBtr0300799 FBtr0300798 FBtr0300797
365 406 410 370 410 407

> head(sort(txhits, decreasing=TRUE))

FBtr0089175 FBtr0089176 FBtr0089177 FBtr0112904 FBtr0289951 FBtr0089243
14376 14051 13811 5433 5411 5410

Rough counting!

I The fact that the reads are actually paired-end is ignored.

I More than 1 alignment per read can be reported in the BAM file (sometimes the
same read hits the same transcript many times).

I A hit is counted even if it’s not compatible with the splicing of the transcript.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Exercise II

Use the TxDb.Dmelanogaster.UCSC.dm3.ensGene package and the result of Exercise I
to count the number of unique hits per transcript, that is, the number of hits from
reads with a unique alignment.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments objects
GappedAlignments constructor and accessors
Exercise I
Two important ways to coerce a GappedAlignments object

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise II

Final notes



Final notes

Under active development:

I Facilities for dealing with paired-end reads (GappedAlignmentPairs container).

I Facilities for detecting/counting hits (from single-end or paired-end reads) that
are compatible with the splicing of the transcript.

Resources:

I Vignettes in GenomicRanges (browseVignettes("GenomicRanges")).

I GRanges, GRangesList and GappedAlignments man pages in GenomicRanges.

I SAMtools website: http://samtools.sourceforge.net/

I Bioconductor mailing lists: http://bioconductor.org/help/mailing-list/

http://samtools.sourceforge.net/
http://bioconductor.org/help/mailing-list/

	Introduction
	Most frequently seen low-level containers
	Rle objects
	IRanges objects
	DataFrame objects
	Other frequently seen low-level containers

	GRanges objects
	GRanges constructor and accessors
	Vector operations on GRanges objects
	Ranges operations on GRanges objects
	Splitting a GRanges object

	GRangesList objects
	GRangesList constructor and accessors
	Vector operations on GRangesList objects
	List operations on GRangesList objects
	Ranges operations on GRangesList objects

	GappedAlignments objects
	GappedAlignments constructor and accessors
	Exercise I
	Two important ways to coerce a GappedAlignments object

	Advanced operations
	Coverage and slicing
	Finding/counting overlaps
	Exercise II

	Final notes

