
BiocExomeData

Sean Davis

28 February 2012

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Description of data . 2

2 Evaluating the Capture Technologies 2

3 Overall capture quality evaluation 8
3.1 Capture Enrichment . 9
3.2 Base-level coverage . 10

3.2.1 Visualizing Coverage in Genomic Context 11
3.2.2 GC Content and Coverage 13

4 Evaluating Variant Calls 15
4.1 The VCF Format . 16
4.2 1000 Genomes Data . 17

4.2.1 Using Known Sites As a Quality Metric 18
4.2.2 Using Transition/Transversion Ratio To Estimate False

Positive Rate . 23
4.3 NCI60 Data . 29

4.3.1 Exercises . 30

5 Using SRAdb to Interact With the IGV Browser 30

6 sessionInfo 31

1

1 Introduction

Second- and third-generation sequencing (NGS) technologies are revolution-
izing all fields of biology. However, NGS is still a relatively expensive propo-
sition. Therefore, several strategies have been developed to target regions
of interest in the genome for sequencing. The most common approach is to
target the exome. Doing so reduces costs by approximately 4-8 fold over
whole-genome sequencing while still probing the regions most likely to cause
disease. A recent review highlights some of the pros and cons of using the
exome sequencing approach over whole-genome sequencing.

Several capture technologies exist and new protocols and reagents are
being introduced at a staggering pace given the relative simplicity of the idea.
A performance comparison of exome DNA sequencing technologies presents
a view of the field as of September, 2011. At the end of the day, though,
exome sequencing has had remarkable staying power and will continue to
play a role in sequencing experimental design and analysis for some time to
come.

1.1 Goals

A “complete” discussion of all aspects of exome capture sequencing is sim-
ply not possible. The goal of this vignette is to show use cases for R and
Bioconductor that answer questions important in exome capture sequencing.

• Evaluate a capture technology

• Evaluate a capture experiment

• Perform quality control on exome capture variant calls

• Examine variants resulting from a couple of exome capture datasets

This vignette is NOT a workflow for performing and analysing exome cap-
ture data.

1.2 Description of data

In this tutorial, we will be working with two small datasets, each composed of
three exome captured samples. Data from chromosome 22 have been isolated
to keep the datasets manageable.

Both datasets have been aligned to the human reference genome to pro-
duce BAM files, processed using GATK tools (see figure), and then had
variants called using samtools.

2

http://www.ncbi.nlm.nih.gov/pubmed/21920051
http://www.ncbi.nlm.nih.gov/pubmed/21947028

Figure 1: Example workflow for postprocessing a BAM file using GATK
toolset (taken from the GATK website)

The first dataset is a subset of data from the 1000 Genomes pilot. The
data were downloaded from here and includes samples NA19909, NA19914,
and NA19916. The data were prepared using the following commands:

#!/bin/bash
/usr/local/samtools/samtools view -h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/other_exome_alignments/NA19914/exome_alignment/NA19914.mapped.illumina.mosaik.ASW.exome.20111114.bam 22 | /usr/local/samtools/samtools view -bS - > NA19914.chr22.bam
/usr/local/samtools/samtools view -h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/other_exome_alignments/NA19909/exome_alignment/NA19909.mapped.illumina.mosaik.ASW.exome.20111114.bam 22 | /usr/local/samtools/samtools view -bS - > NA19909.chr22.bam
/usr/local/samtools/samtools view -h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/other_exome_alignments/NA19916/exome_alignment/NA19916.mapped.illumina.mosaik.ASW.exome.20111114.bam 22 | /usr/local/samtools/samtools view -bS - > NA19916.chr22.bam
/usr/local/samtools/samtools index NA19914.chr22.bam
/usr/local/samtools/samtools index NA19909.chr22.bam
/usr/local/samtools/samtools index NA19916.chr22.bam

The second data set is unpublished data from the NCI-60 cell line panel.

3

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/other_exome_alignments/
http://dtp.nci.nih.gov/docs/misc/common_files/cell_list.html

Chosen to represent common cancers, the NCI-60 panel has been extensively
profiled for copy number variation, gene expression, DNA methylation, drug
sensitivity, miRNA expression, and limited DNA sequence variation (Sanger
sequencing). The data from three lines, HOP-92, SK-MEL-5, and HCT-15
are included here as illustrative examples.

Table 1: Cell line names and cancer types they represent

Cell Line Name Cancer Type
HCT-25 Colon Cancer
HOP-92 Lung Cancer
SK-MEL-5 Melanoma

2 Evaluating the Capture Technologies

A first step in designing and analysing an exome capture experiment is to
evaluate the technology proposed for the capture. Typically, the manufactur-
ers of a capture kit will provide a BED file that describes either the targets
or the baits. A target is a region of the genome which is targeted for se-
quencing. In exome capture, the targets are typically the coding exons but
may additionally include UTRs, splice sites, or promoter regions. A bait is
a sequence region designed to capture around the targets; typically, baits are
short oligos that are used to hybridize to the input DNA. Note that baits
and targets are different concepts. When evaluating a capture strategy, we
are typically going to be concerned with how well the baits overlap with our
targets.

For each of the two capture experiments, I have supplied the capture
regions as BED files. As a quick representative example, we will look at the
Agilent 38MB SureSelect capture kit that was used for the NCI60 capture
data.

> options(width=50)
> library(ascii)
> library(rtracklayer)
> ag38mss = import(system.file(’extdata/capture/Agilent_SureSelect_Human_All_Exon_38Mb_Kit_hg19.bed’,

package=’BasicExomeExample’))
> class(ag38mss)
[1] "UCSCData"

4

http://genome.ucsc.edu/FAQ/FAQformat#format1

attr(,"package")
[1] "rtracklayer"

As we can see, this is an object of class UCSCData. We are going to be
doing some interval operations and examinations on these data, so we first
convert to a GRanges object.

> ag38mssGR = as(ag38mss,"GRanges")
> ag38mssGR
GRanges with 343850 ranges and 2 elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 [30276, 30395] +
[2] chr1 [30276, 30395] +
[3] chr1 [30276, 30395] +
[4] chr1 [30312, 30431] -
[5] chr1 [30312, 30431] -
[6] chr1 [69070, 69189] -
[7] chr1 [69070, 69189] +
[8] chr1 [69070, 69189] +
[9] chr1 [69190, 69309] -
...

[343842] chrY [59337930, 59338049] +
[343843] chrY [59338050, 59338169] +
[343844] chrY [59338747, 59338866] +
[343845] chrY [59340176, 59340295] +
[343846] chrY [59342461, 59342580] +
[343847] chrY [59342581, 59342700] +
[343848] chrY [59342676, 59342795] +
[343849] chrY [59342901, 59343020] +
[343850] chrY [59343021, 59343140] +

| name score
| <character> <numeric>

[1] | A_36_B320275 1000
[2] | A_36_B320398 1000
[3] | A_36_B320455 1000
[4] | A_36_B320991 1000
[5] | A_36_B321103 1000
[6] | A_36_B161002 1000
[7] | A_36_B223635 1000

5

[8] | A_36_B241957 1000
[9] | A_36_B161001 1000
...

[343842] | A_36_B142931 1
[343843] | A_36_B142932 1
[343844] | A_36_B152403 1
[343845] | A_36_B143525 1
[343846] | A_36_B144510 1
[343847] | A_36_B144511 1
[343848] | A_36_B144512 1
[343849] | A_36_B144514 1
[343850] | A_36_B144515 1

seqlengths:

chr1 chr10 ... chrX chrY
249231325 135516111 ... 155240134 59343140

> seqlevels(ag38mssGR) = sub(’chr’,’’,seqlevels(ag38mssGR))

Now, we can begin to look at the data. What are the sizes of the baits?

> summary(width(ag38mssGR))
Min. 1st Qu. Median Mean 3rd Qu. Max.
114 120 120 120 120 126

> print(table(width(ag38mssGR)))
114 115 116 117 118 119 120
22 47 136 58 128 638 342439

121 122 123 124 125 126
183 71 43 78 1 6

We might ask the question about how the baits are spaced relative to
each other. In particular, how many baits cover a particular region of the
genome? We can calculate coverage to answer that question.

> baitcov = coverage(ag38mssGR)

The baitcov object is a list of integer Rle objects. We want to know how
many bases in the genome have each level of coverage. The goal, then, is to
create a two-column table with coverage level as one column and number of
bases (at that coverage level) as the second column.

> # make a single long vector of each of the lengths and values of

6

> # the baitcov object
> rl = do.call(c,sapply(baitcov,runLength))
> rv = do.call(c,sapply(baitcov,runValue))
> # need to use "as.numeric" here to avoid integer overflow
> baseCov = aggregate(rl,by=list(rv),function(tmp) {

return(sum(as.numeric(tmp)))})
> colnames(baseCov) = c(’coverage’,’numberOfBases’)
> baseCov

coverage numberOfBases
1 0 3053253777
2 1 37393238
3 2 886217
4 3 216572
5 4 110772
6 5 45733
7 6 44051
8 7 26459
9 8 6908
10 9 696
11 10 5347
12 11 15326
13 12 856
14 13 350
15 14 671
16 22 744

Agilent advertises this as a 38MB capture kit and the result above sug-
gests that this is, indeed, the case. Interestingly, most bases are captured by
only one bait, but some are captured by many more baits than that. There
may be good design reasons for this redundancy.

It is also interesting to examine the extent to which the baits cover known
targets. For the purposes of this exercise, we will be using the UCSC known
genes TranscriptDB package to define our target regions of interest.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

We are usually interested in the coding regions of the genes when per-
forming exome capture experiments, so we pull those regions using the cds
method.

> cdsRegions = cds(TxDb.Hsapiens.UCSC.hg19.knownGene)

7

> # We are being unsafe and ignoring sequence lengths
> seqlengths(cdsRegions) <- rep(NA,length(seqlengths(cdsRegions)))
> # For the purposes of this tutorial, we will try to stick
> # with the convention of NO ’chr’ in chromosome names
> seqlevels(cdsRegions) <- sub(’chr’,’’,seqlevels(cdsRegions))

Because the baits work by hybridization to the fragmented sample library,
the baits can probably be extended by about 50 bp to allow for this extended
capture sequence.

> # resize regions to be 50bp larger on each end
> ag38mssGRpadded = resize(ag38mssGR,width=width(ag38mssGR)+100,fix="center")
> # and fix so strand is ’*’ since stranded overlaps are not important
> strand(ag38mssGRpadded) = ’*’

Finally, we are ready to count the overlaps between the cdsRegions and
the expanded baits.

> # Get the number of baits overlapping each cdsRegion
> baitOverlapsWithCDS = countOverlaps(cdsRegions,ag38mssGRpadded)
> hist(baitOverlapsWithCDS,xlim=c(0,10),breaks=’scott’,col=’black’,

main=’CDS regions versus number of bait overlaps’)

8

3 Overall capture quality evaluation

After the exome capture experiment, quality control of the sequencing files,
and alignment to the genome are complete, we are often interested to look
at the data from a fairly high level. Three questions are often of interest.

1. What is the enrichment of the exome capture regions?

2. What is the per-base coverage of the targets?

To examine these issues, we are going to use three samples from the 1000
Genomes project, but we will limit our analyses to only chromosome 22 to

9

keep the analyses snappy.

3.1 Capture Enrichment

If no capture had been used, the reads would be “randomly” spread across
the genome. We are interested in how well our capture reaction worked.
By counting the proportion of aligned reads that fall on our “extended” bait
regions versus the number expected if the reads were randomly placed, we
can get an estimate of the enrichment availed us by using targeted sequencing
over whole-genome sequencing.

The 1000 Genomes project used a different capture reagent than what
we worked with in the first exercise, so we load the 1000 Genomes regions.

> # This is a non-standard BED format, so must load using
> # read.delim rather than rtracklayer::import
> ag1000gss = read.delim(system.file(’extdata/capture/20110225.exome.consensus.annotation.bed’,

package=’BasicExomeExample’),sep="\t",header=FALSE)
> # convert to GRanges
> ag1000gssGR = GRanges(seqnames=ag1000gss[,1],

ranges=IRanges(start=ag1000gss[,2],end=ag1000gss[,3]))
> seqlevels(ag1000gssGR) = sub(’chr’,’’,seqlevels(ag1000gssGR))
> # expand each region by 50bp
> ag1000gssGR = resize(ag1000gssGR,width=width(ag1000gssGR)+100)
> # collapse overlapping regions onto single regions
> ag1000gssGR = reduce(ag1000gssGR)
> sum(width(ag1000gssGR))
[1] 46899965

So, this capture reagent would be expected to capture about 47MB of
sequence.

Next, we need to read in a representative BAM file.

> alignedGR = readGappedAlignments(system.file(’extdata/1000G/bam/NA19909.chr22.bam’,package=’BasicExomeExample’))

We limit our capture regions to those on chromosome 22.

> chr22captureRegions = ag1000gssGR[seqnames(ag1000gssGR)==’22’,]

Now, we need to calculate the number of reads that overlap a capture
region and the number of reads that fall outside the capture regions.

10

> incapture = countOverlaps(chr22captureRegions,alignedGR)
> outcapture = length(alignedGR)-sum(incapture)

And the number of bases of captured and non-captured bases is approx-
imately:

> capturedBases = sum(width(chr22captureRegions))
> # This is an approximation!
> notCapturedBases = sum(width(gaps(chr22captureRegions)))

Finally, I calculate the enrichment as a ratio of ratios.

> enrichment = (sum(incapture)/capturedBases)/(outcapture/notCapturedBases)
> enrichment
[1] 29.05708

So, we got roughly 30-fold enrichment over a random distribution of
reads. There is some sloppiness in the code above, but a metric like this
one can certainly pick up a failed experiment and could be used to compare
across runs. Also, while this is an overestimate given that chromosome 22
is acrocentric, this level of enrichment is associated with a good capture
sequencing experiment.

3.2 Base-level coverage

Calculating base-level coverage is quite simple using the objects we have
already set up.

> cvg = coverage(alignedGR)
> class(cvg)
[1] "SimpleRleList"
attr(,"package")
[1] "IRanges"
> cvg
SimpleRleList of length 86
$‘1‘
’integer’ Rle of length 249250621 with 1 run

Lengths: 249250621
Values : 0

$‘2‘

11

’integer’ Rle of length 243199373 with 1 run
Lengths: 243199373
Values : 0

$‘3‘
’integer’ Rle of length 198022430 with 1 run

Lengths: 198022430
Values : 0

$‘4‘
’integer’ Rle of length 191154276 with 1 run

Lengths: 191154276
Values : 0

$‘5‘
’integer’ Rle of length 180915260 with 1 run

Lengths: 180915260
Values : 0

...
<81 more elements>
> cvg[[’22’]]
’integer’ Rle of length 51304566 with 2590278 runs

Lengths: 16050083 5 ... 60019
Values : 0 1 ... 0

3.2.1 Visualizing Coverage in Genomic Context

The Gviz package enables UCSC-like track views of data and annotation and
is potentially quite useful for visualizing multiple tracks of data on the same
plot. We can use the Gviz package (or the ggbio package; choice is a GOOD
THING) to visualize our coverage data in the context of our capture regions
to show the relative enrichment for capture regions.

> library(rtracklayer)
> if(!require(Gviz)) {

biocLite(’Gviz’)
require(Gviz)
}

> itrack = IdeogramTrack(genome=’hg19’,chromosome=’22’)

12

> gtrack = GenomeAxisTrack(genome=’hg19’)
> # funny issue with chromosome names needing to start with ’chr’ for Gviz
> chr22CR = chr22captureRegions
> seqlevels(chr22CR) = paste(’chr’,seqlevels(chr22CR),sep="")
> atrack = AnnotationTrack(chr22CR,chromosome=’22’,genome=’hg19’)
> cvgVec = as.integer(cvg$’22’)
> dtrack = DataTrack(start=20e6:21e6,

width=rep(1,1e6+1),
data=cvgVec[20e6:21e6],chromosome=’22’,name=’Coverage’,type=’l’)

> plotTracks(list(itrack,gtrack,atrack,dtrack),from=20.1e6,to=20.11e6)

13

3.2.2 GC Content and Coverage

There is a well-known phenomenon in capture sequencing (indeed, with the
Illumina sequencing platform itself) whereby GC content of the region be-
ing sequenced affects the coverage in that region. Using the Biostrings,
BSgenome, and BSgenome data packages, it is just a few lines of code to
examine how GC content and capture coverage are related.

> library(BSgenome.Hsapiens.UCSC.hg19)
> chr22 = Hsapiens$chr22
> # Make views on the chromosome 22 sequence that correspond to
> # the capture regions
> captSeqViews = Views(chr22,ranges(chr22CR))
> # And calculate the GC content:
> gcContent = letterFrequency(captSeqViews,letters="GC")
> totalBases = letterFrequency(captSeqViews,letters="GCAT")
> gcPercent = gcContent/totalBases
> hist(gcPercent)

14

Calculating the average coverage in each capture region is also straight-
forward.

> library(ggplot2)
> cvgViews = Views(cvg$’22’,ranges(chr22CR))
> cvgMeans = viewMeans(cvgViews)
> gcCoverage = data.frame(Coverage=cvgMeans,

GCPercent=as.numeric(gcPercent))
> print(ggplot(gcCoverage,

aes(x=GCPercent,y=Coverage))+geom_point(alpha=0.2))

15

There appears to be a strong relationship between GC content and cov-
erage such that it will be nearly impossible to capture and sequence regions
with GC content above about 0.7.

4 Evaluating Variant Calls

The primary goal of targeted capture sequencing is to produce a list of vari-
ants between a reference genome and the sample being sequenced. There are
a number of software packages for producing variant calls given a bam file
(or a set of them) including:

• GATK Unified Genotyper

16

• samtools mpileup

• VarScan

• SnvMix

• . . .

For the purposes of this little exercise, I have used samtools mpileup like so:

/usr/local/samtools/samtools mpileup -D -uf \
../fasta/human_g1k_v37.fasta *.bam | bcftools view -vcg - > 1kg.chr22.vcf

4.1 The VCF Format

The most common format for describing variants with respect to a reference
genome is the Variant Call Format (VCF). A VCF file is a tab-delimited
text format that contains a header describing the context and content of the
file, including definitions of Tags that are used in the file to provide details
of the variant calls. After the header, the actual variant calls are stored in
sequential lines of text, one per variant. Here are a few lines of our example
1000 Genomes VCF file.

I have removed the header, FORMAT, INFO, and specific genotypes to
make the output a bit easier to read. The columns are fairly self-explanatory.
The ID column can also contain the ID of any known variant such as an
rsID from the dbSNP database. The FILTER column can contain user-
defined tags for filters that apply to the specific variant in the file, such as
“LOWQUALITY” or “INDEL”.

The INFO and Genotype columns are a bit more complicated, so I will
not describe it in detail and refer the reader to the VCF Format specification
for specifics. However, I will point out that each sample is represented by
a column in the VCF file. The GT section of that column will typically
be one of “0/0”, “0/1”, or “1/1” which correspond to homozygous reference,
heterozygous, and homozygous for the first variant allele. If more than one
variant allele is present, the presence of that allele is noted by a 2 or 3 in the
genotype.

To understand the tags in the INFO and GENOTYPE columns, one
must examine the VCF file header:

> readLines(system.file(’extdata/1000G/1kg.chr22.vcf’,package=’BasicExomeExample’),n=10)
[1] "##fileformat=VCFv4.0"
[2] "##samtoolsVersion=0.1.18 (r982:295)"

17

http://

Table 2: VCF record example

X.CHROM POS ID REF ALT QUAL FILTER
22 16136566 . A G 5 .
22 16139004 . G T 16 .
22 16142489 . T A 14 .
22 16143946 . A G 14 .
22 16148996 . C G 16 .
22 16156691 . G A 6 .
22 16159060 . G A 49 .
22 16159563 . G A 17 .
22 16228619 . T C 16 .
22 16248248 . C T 119 .
22 16264166 . C T 22 .
22 16288776 . A G,T 45 .
22 16311474 . A G 47 .
22 16344474 . A G 46 .
22 16344748 . T C 46 .

[3] "##INFO=<ID=DP,Number=1,Type=Integer,Description=\"Raw read depth\">"
[4] "##INFO=<ID=DP4,Number=4,Type=Integer,Description=\"# high-quality ref-forward bases, ref-reverse, alt-forward and alt-reverse bases\">"
[5] "##INFO=<ID=MQ,Number=1,Type=Integer,Description=\"Root-mean-square mapping quality of covering reads\">"
[6] "##INFO=<ID=VDB,Number=1,Type=Float,Description=\"End distance bias\">"
[7] "##INFO=<ID=FQ,Number=1,Type=Float,Description=\"Phred probability that sample chromosomes are not all the same\">"
[8] "##INFO=<ID=AF1,Number=1,Type=Float,Description=\"Max-likelihood estimate of the site allele frequency of the first ALT allele\">"
[9] "##INFO=<ID=CI95,Number=2,Type=Float,Description=\"Equal-tail Bayesian credible interval of the site allele frequency at the 95% level\">"

[10] "##INFO=<ID=PV4,Number=4,Type=Float,Description=\"P-values for strand bias, baseQ bias, mapQ bias and tail distance bias\">"

As an example, the INFO tag “DP” will be a single (Number=1) value
of Type=Integer and represents “Raw read depth”.

4.2 1000 Genomes Data

The goal in this section is to examine some qualities of the variant calls made
on three samples from the 1000 Genomes Exome Pilot data.

We start by using the VariantAnnotation package to load the VCF file
into a VCF object.

> library(VariantAnnotation)

18

Table 3: VCF record example: INFO, FORMAT, and GENOTYPE columns

INFO FORMAT NA19909
DP=24;VDB=0.0535;AF1=0.4947;CI95=0.3333,0.6667;DP4=1,1,8,9;MQ=8;FQ=6.27;PV4=1,0.11,0.37,0.48 GT:PL:DP:GQ 0/1:26,10,29:6:17
DP=25;VDB=0.0568;AF1=0.172;CI95=0.1667,0.3333;DP4=8,11,3,2;MQ=17;FQ=16.3;PV4=0.63,0.053,1,0.44 GT:PL:DP:GQ 0/1:50,0,68:11:46
DP=14;VDB=0.0179;AF1=0.2182;CI95=0.1667,0.6667;DP4=3,4,2,3;MQ=16;FQ=14.9;PV4=1,0.0021,1,1 GT:PL:DP:GQ 0/0:0,6,6:2:9
DP=6;VDB=0.0198;AF1=0.4462;CI95=0.1667,0.6667;DP4=0,1,1,4;MQ=13;FQ=15;PV4=1,1,1,1 GT:PL:DP:GQ 0/1:44,9,44:3:35
DP=16;VDB=0.0176;AF1=0.4365;CI95=0.1667,0.6667;DP4=3,6,3,3;MQ=14;FQ=18.3;PV4=0.62,1,1,0.36 GT:PL:DP:GQ 0/1:38,0,47:7:40
DP=18;VDB=0.0237;AF1=0.3173;CI95=0.1667,0.5;DP4=6,4,4,2;MQ=13;FQ=6.94;PV4=1,0.0026,1,1 GT:PL:DP:GQ 0/1:43,9,43:3:33
DP=29;VDB=0.0421;AF1=0.4986;CI95=0.5,0.5;DP4=7,10,7,5;MQ=13;FQ=52.3;PV4=0.46,2.6e-07,1,1 GT:PL:DP:GQ 0/1:18,0,39:10:21
DP=16;VDB=0.0168;AF1=0.3125;CI95=0.1667,0.5;DP4=2,4,4,3;MQ=15;FQ=18.3;PV4=0.59,0.26,0.17,1 GT:PL:DP:GQ 0/0:0,12,12:4:12
DP=8;VDB=0.0240;AF1=0.4992;CI95=0.3333,0.6667;DP4=2,0,3,3;MQ=17;FQ=18;PV4=0.46,0.085,0.00038,1 GT:PL:DP:GQ 0/1:18,0,21:3:19
DP=27;VDB=0.0319;AF1=0.5;CI95=0.5,0.5;DP4=2,3,10,10;MQ=17;FQ=122;PV4=1,1,0.00049,0.097 GT:PL:DP:GQ 0/1:46,0,55:8:48
DP=15;VDB=0.0232;AF1=0.4921;CI95=0.3333,0.5;DP4=4,4,5,1;MQ=19;FQ=24.7;PV4=0.3,0.01,0.3,0.14 GT:PL:DP:GQ 0/1:35,0,44:6:37
DP=13;VDB=0.0144;AF1=0.7741;CI95=0.6667,0.8333;DP4=1,0,7,3;MQ=16;FQ=-12.4;PV4=1,0.12,0.14,1 GT:PL:DP:GQ 1/1:42,26,14,0,20,23:5:28
DP=14;VDB=0.0299;AF1=0.4904;CI95=0.3333,0.5;DP4=1,1,6,5;MQ=16;FQ=48.9;PV4=1,0.13,0.0028,0.086 GT:PL:DP:GQ 0/1:51,15,51:5:36
DP=19;VDB=0.0419;AF1=0.4997;CI95=0.5,0.5;DP4=1,1,12,5;MQ=12;FQ=48.3;PV4=1,1,1,0.087 GT:PL:DP:GQ 0/1:23,2,26:4:22
DP=15;VDB=0.0371;AF1=0.1774;CI95=0.1667,0.3333;DP4=5,4,2,3;MQ=26;FQ=47.4;PV4=1,0.16,0.00095,1 GT:PL:DP:GQ 0/0:0,12,12:4:15

> vcf = readVcf(system.file(’extdata/1000G/1kg.chr22.vcf’,
package=’BasicExomeExample’),genome=’hg19’)

4.2.1 Using Known Sites As a Quality Metric

One of the first tasks is to look at the overlap of the called variants with
known variants. Here, I am using dbSNP, version 132, as a source of “known”
variants. There are probably better choices. The current recommendation
from the Broad is to use the latest HapMap VCF file, but I leave that as
an exercise. The idea is that “known” variants represent true positives while
the “novel” variants (those not in dbSNP) are enriched for false positives.

To get a copy of dbSNP, we can conveniently load one of the SNPlocs
packages. After loading, I convert to a GRanges object. Note that I am
ignoring the actual genotypes and just grabbing the base pair locations of
the variants.

> library(SNPlocs.Hsapiens.dbSNP.20101109)
> tmpchr22 = getSNPlocs(’ch22’)
> dbsnpchr22 = GRanges(seqnames=rep(’22’,nrow(tmpchr22)),

19

ranges=IRanges(start=tmpchr22$loc,width=1))

Finding the overlaps between the variant calls from the VCF file and
dbsnp is straightforward.

> ovl = findOverlaps(rowData(vcf),dbsnpchr22)

It may be instructive to look at the overlap between the capture regions
and the variant calls.

> seqlevels(ag1000gssGR)=sub(’chr’,’’,seqlevels(ag1000gssGR))
> ovl2 = findOverlaps(rowData(vcf),ag1000gssGR)

The next code block defines a data.frame of metrics from the VCF file.
We will use the resulting data to examine a few quality metrics with regard
to known (in dbSNP) and novel (not in dbSNP) variants.

> QD = elementMetadata(fixed(vcf))$QUAL/elementMetadata(info(vcf))$DP
> knownNovel = rep("novel",length(QD))
> knownNovel[queryHits(ovl)]="known"
> captured = rep(FALSE,length(QD))
> captured[queryHits(ovl2)]=TRUE
> pv4matrix = do.call(rbind,

as.list(elementMetadata(info(vcf))$PV4))
> df1 = data.frame(location=start(rowData(vcf)),

QD=QD,knownNovel=knownNovel,
QUAL=elementMetadata(fixed(vcf))$QUAL,
PV1=pv4matrix[,1],PV2=pv4matrix[,2],
PV3=pv4matrix[,3],PV4=pv4matrix[,4],
MQ=elementMetadata(info(vcf))$MQ,
VDB=elementMetadata(info(vcf))$VDB,DP=elementMetadata(info(vcf))$DP)

Now, to examine some relationships between the known and novel sites
and some VCF file metrics. Variant quality should be important.

20

Mapping quality may also be important.

21

And check out read depth at the locus.

22

A number of other plots might be of interest. Feel free to try things out
to see if you can find parameters that appear to separate known from novel
variants.

> # some other plots that might be of interest
> ggplot(df1,aes(DP,fill=captured))+

geom_density(alpha=0.5)+scale_x_continuous(limits=c(0,60))
> ggplot(df1,aes(PV1,fill=knownNovel))+

geom_bar()+scale_x_continuous(limits=c(0,1))
> ggplot(df1,aes(PV2,fill=knownNovel))+

geom_bar()+scale_x_continuous(limits=c(0,1))
> ggplot(df1,aes(PV3,fill=knownNovel))+

geom_bar()+scale_x_continuous(limits=c(0,1))

23

> ggplot(df1,aes(PV4,fill=captured))+
geom_density(alpha=0.4)+scale_x_continuous(limits=c(0,1))

4.2.2 Using Transition/Transversion Ratio To Estimate False Pos-
itive Rate

DNA mutation at a single nucleotide can be classified as either a transition
or a transversion. As can be seen from the figure, transversions are twice
as likely as transitions a priori. Hence, the naive ratio of transitions (ti) to
transversions (tv) is 0.5. Figures are from this site

However, a number of biological processes alter this naive ti/tv ratio so

24

http://www.mun.ca/biology/scarr/Transitions_vs_Transversions.html

that it is above 2 for natural variation across the human genome and 3.3
for the coding regions of the genome. A partial explanation is given by
the next figure which describes the process of “wobble”. A tautomeric shift
(change from an amino group to an imino group) leads to a mispairing in
replication and results in a transition mutation in the DNA. This process
occurs naturally for each base and results in SNVs being introduced, all of
which are transitions.

Now, let us assume that the observed ti/tv ratio is a mixture of true
positive variants and false positive variants.

• If all observed variants are true positives, then we should observe ap-
proximately the ti/tv for the exome, which is reliably estimated at
3.3.

• If all observed variants are false positives, then we should observe the
naive expected ti/tv, or 0.5.

• In reality, the observed ti/tv ratio is a mixture of true and false posi-
tives.

Given the observed ti/tv (titvobs), the false positive ti/tv (titvfp), the true
positive ti/tv (titvtp), and α, the proportion of SNVs that are true positives,
we can write:

α (titvtp) + (1 - α) (titvfp) = titvobs
Solving for 1 - α gives an estimate of the false positive rate.
FPR = 1 - (titvobs - titvfp)/(titvtp - titvfp)
Writing a function to calculate titvobs is our first step to using ti/tv ratio

as a quality metric.

25

> titv = function(object,sample=NULL) {
takes a VCF file as input
returns a list:
table: the table of mutations from reference to alternate allele
ti: The number of transition mutations observed
tv: The number of transversion mutations observed
ratio: The ratio of ti/tv
ref = as.character(values(object)$REF)
alt = as.character(values(object)$ALT)
Nrows = (ref=="N" | alt=="N")
snpsonly = (nchar(ref)==1 & nchar(alt)==1)
ref = ref[!Nrows & snpsonly]
alt = alt[!Nrows & snpsonly]
if(!is.null(sample)) {

onlySampleVars = (geno(object)$GT[,sample]!=’0/0’)
ref = ref[onlySampleVars]
alt = alt[onlySampleVars]
}

y = table(ref,alt)
ti = y[2,4]+y[4,2]+y[1,3]+y[3,1]
tv = y[1,2]+y[2,1]+y[1,4]+y[4,1]+y[2,3]+y[3,2]+y[3,4]+y[4,3]
return(list(table=y,ti=ti,tv=tv,ratio=ti/tv))
}

> vcf = read.delim(system.file(’extdata/1000G/1kg.chr22.vcf’,
package=’BasicExomeExample’),skip=17)

> vcfSNP = vcf[nchar(as.character(vcf$ALT))==1
& nchar(as.character(vcf$REF))==1,]

> head(vcfSNP)
X.CHROM POS ID REF ALT QUAL FILTER

1 22 16136566 . A G 4.86 .
2 22 16139004 . G T 15.50 .
3 22 16142489 . T A 13.60 .
4 22 16143946 . A G 14.20 .
5 22 16148996 . C G 15.90 .
6 22 16156691 . G A 5.70 .

INFO
1 DP=24;VDB=0.0535;AF1=0.4947;CI95=0.3333,0.6667;DP4=1,1,8,9;MQ=8;FQ=6.27;PV4=1,0.11,0.37,0.48
2 DP=25;VDB=0.0568;AF1=0.172;CI95=0.1667,0.3333;DP4=8,11,3,2;MQ=17;FQ=16.3;PV4=0.63,0.053,1,0.44
3 DP=14;VDB=0.0179;AF1=0.2182;CI95=0.1667,0.6667;DP4=3,4,2,3;MQ=16;FQ=14.9;PV4=1,0.0021,1,1

26

4 DP=6;VDB=0.0198;AF1=0.4462;CI95=0.1667,0.6667;DP4=0,1,1,4;MQ=13;FQ=15;PV4=1,1,1,1
5 DP=16;VDB=0.0176;AF1=0.4365;CI95=0.1667,0.6667;DP4=3,6,3,3;MQ=14;FQ=18.3;PV4=0.62,1,1,0.36
6 DP=18;VDB=0.0237;AF1=0.3173;CI95=0.1667,0.5;DP4=6,4,4,2;MQ=13;FQ=6.94;PV4=1,0.0026,1,1

FORMAT NA19909 NA19914
1 GT:PL:DP:GQ 0/1:26,10,29:6:17 0/1:36,21,36:7:15
2 GT:PL:DP:GQ 0/1:50,0,68:11:46 0/0:0,27,27:9:30
3 GT:PL:DP:GQ 0/0:0,6,6:2:9 0/0:0,6,6:2:9
4 GT:PL:DP:GQ 0/1:44,9,44:3:35 0/0:0,3,3:1:3
5 GT:PL:DP:GQ 0/1:38,0,47:7:40 0/1:0,0,9:4:4
6 GT:PL:DP:GQ 0/1:43,9,43:3:33 0/1:7,0,25:9:8

NA19916
1 0/1:14,4,17:6:12
2 0/0:0,12,12:4:16
3 0/1:47,0,56:8:44
4 0/1:21,6,21:2:15
5 0/1:13,0,22:4:15
6 0/0:0,12,12:4:12
> vcfGR = GRanges(seqnames=vcfSNP[,1],

ranges=IRanges(start=vcfSNP$POS,width=1),
REF=vcfSNP$REF,ALT=vcfSNP$ALT,QUAL=vcfSNP$QUAL)

> head(vcfGR)
GRanges with 6 ranges and 3 elementMetadata cols:

seqnames ranges strand |
<Rle> <IRanges> <Rle> |

[1] 22 [16136566, 16136566] * |
[2] 22 [16139004, 16139004] * |
[3] 22 [16142489, 16142489] * |
[4] 22 [16143946, 16143946] * |
[5] 22 [16148996, 16148996] * |
[6] 22 [16156691, 16156691] * |

REF ALT QUAL
<factor> <factor> <numeric>

[1] A G 4.86
[2] G T 15.50
[3] T A 13.60
[4] A G 14.20
[5] C G 15.90
[6] G A 5.70

seqlengths:

27

22
NA

We need another simple function to calculate the false positive rate
(FPR) given an observed ti/tv ratio.

> # takes an observed ti/tv ratio, the expected titv for false positives,
> # and the expected titv for true positives; default is appropriate for exome data
> fpr = function(titv,titvFP=0.5,titvTP=3.3) {return(1-(titv-titvFP)/(titvTP-titvFP))}

To ask a couple of relevant questions, we need to limit our variants to
the exome.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> cdsRegions = cds(TxDb.Hsapiens.UCSC.hg19.knownGene)
> cdsRegions = reduce(cdsRegions)
> # We are being unsafe and ignoring sequence lengths
> seqlengths(cdsRegions) <- rep(NA,length(seqlengths(cdsRegions)))
> # For the purposes of this tutorial, we will try to stick
> # with the convention of NO ’chr’ in chromosome names
> seqlevels(cdsRegions) <- sub(’chr’,’’,seqlevels(cdsRegions))

> # overlaps between cdsRegions and our variants
> ovl = findOverlaps(cdsRegions,vcfGR)
> vcf2 = vcfGR[subjectHits(ovl),]

And now, lets look at the quality of known and novel variants.

> ovl2 = findOverlaps(vcf2,dbsnpchr22)
> knownNovel=rep("novel",length(vcf2))
> knownNovel[queryHits(ovl2)]="known"
> titvKnown = titv(vcf2[knownNovel==’known’,])
> titvNovel = titv(vcf2[knownNovel==’novel’,])
> titvKnown$ratio
[1] 3.23348
> titvNovel$ratio
[1] 1.8125

The ratio for known sites is close to that empirically expected for exonic
variants while the ratio for novel sites is much lower. An estimate of the
FPR is then:

28

> fpr(titvKnown$ratio)
[1] 0.02375708
> fpr(titvNovel$ratio)
[1] 0.53125

Our 1000 Genomes subset dataset shows very high quality at known
variant sites. However, the “novel” sites appear to be enriched for false
positives.

Can we improve on this FPR? We noticed above that the variant quality,
QUAL, distinguished known and novel variants well. So, it makes sense that
QUAL might enrich for true positives. Let’s take a look.

> qual = values(vcf2)[["QUAL"]]
> summary(qual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.01 79.20 151.00 378.30 999.00 999.00

> qualSeq = seq(5,60,5)
> titvByQuality = sapply(qualSeq,function(threshold) {

return(titv(vcf2[knownNovel==’novel’ & qual>threshold])$ratio)})

> plot(qualSeq,titvByQuality,main="Ti/Tv Versus Variant Quality",
sub = "Novel variants only",xlab="Variant Quality Threshold",
ylab = "Observed Ti/Tv Ratio")

29

At this point, one can begin to play with various metrics to try to en-
rich both known and novel variant calls with true positives. This filtration
process, which leads to higher specificity, must be balanced against loss in
sensitivity. I leave construction of ROC curves as a further exercise, but note
that one can use the known variants as an estimate of true positives.

Consider how you would use other sources of genomic annotation to fur-
ther improve the quality and biological interpretability of these data.

4.3 NCI60 Data

The NCI60 data are analogous to the 1000 genomes dataset, but the vari-
ants in this dataset may be disease-associated. In fact, the remnants of the
original disease etiology are still present in the data.

30

> vcf = readVcf(system.file(’extdata/NCI60/NCI60.chr22.vcf’,package=’BasicExomeExample’),genome=’hg19’)

4.3.1 Exercises

• See what you can learn about the biology of melanoma by examining
the transition/transversion matrix.

• Make a GRanges object from data from the COSMIC database to look
for variant overlaps with known cancer variants.

5 Using SRAdb to Interact With the IGV Browser

Working with sequence data is often best done interactively in a genome
browser, a task not easily done from R itself. We have found the Integrative
Genomics Viewer (IGV) a high-performance visualization tool for interac-
tive exploration of large, integrated datasets, increasing usefully for visual-
izing sequence alignments. In SRAdb, functions startIGV, load2IGV and
load2newIGV provide convenient functionality for R to interact with IGV.
IGV offers a remort control port that allows R to communicate with IGV.
The current command set is fairly limited, but it does allow for some IGV
operations to be performed in the R console. To utilize this functionality,
be sure that IGV is set to allow communication via the “enable port” in the
advanced preferences in IGV.

> if(!require(SRAdb)) {
library(BiocInstaller)
biocLite(’SRAdb’)
}

> # start IGV on your computer
> startIGV(’mm’) # 1.2GB memory used
> # connect to IGV socket
> sock = IGVsocket()
> # Change IGV genome to match our BAM files
> IGVgenome(sock,’b37’)
> # Load our example BAM files into IGV
> exampleBams = file.path(system.file(’extdata/1000G/bam/’,package=’BasicExomeExample’),dir(system.file(’extdata/1000G/bam/’,package=’BasicExomeExample’),pattern=’.bam$’))
> IGVload(sock,exampleBams)
> gotoVCFRecord <- function(vcfObject,sock,idx=1) {

takes a VCF object, an IGV socket, and the index
of the variant of interest

31

rd = rd = rowData(vcf)
IGVgoto(sock,sprintf("%s:%d-%d",seqnames(rd)[idx],start(rd)[idx],end(rd)[idx]))
}

> vcf = readVcf(system.file(’extdata/1000G/1kg.chr22.vcf’,package=’BasicExomeExample’),genome=’hg19’)
> indelSites = which(values(info(vcf))[[’INDEL’]])
> gotoVCFRecord(vcf,sock,indelSites[2])
> # and take a pretty picture
> IGVsnapshot(sock)

6 sessionInfo

> sessionInfo()
R Under development (unstable) (2012-01-19 r58141)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid stats graphics grDevices
[5] utils datasets methods base

other attached packages:
[1] SNPlocs.Hsapiens.dbSNP.20101109_0.99.6
[2] VariantAnnotation_1.1.55
[3] ggplot2_0.8.9
[4] proto_0.3-9.2
[5] reshape_0.8.4
[6] plyr_1.7.1
[7] BSgenome.Hsapiens.UCSC.hg19_1.3.17
[8] BSgenome_1.23.2
[9] Gviz_0.99.0

[10] Rsamtools_1.7.37
[11] Biostrings_2.23.6
[12] TxDb.Hsapiens.UCSC.hg19.knownGene_2.6.2
[13] GenomicFeatures_1.7.28
[14] AnnotationDbi_1.17.22
[15] Biobase_2.15.3
[16] rtracklayer_1.15.7

32

[17] GenomicRanges_1.7.28
[18] IRanges_1.13.26
[19] BiocGenerics_0.1.7
[20] ascii_2.1

loaded via a namespace (and not attached):
[1] biomaRt_2.11.1 bitops_1.0-4.1
[3] DBI_0.2-5 digest_0.5.1
[5] lattice_0.20-0 Matrix_1.0-3
[7] RColorBrewer_1.0-5 RCurl_1.91-1
[9] RSQLite_0.11.1 snpStats_1.5.4

[11] splines_2.15.0 survival_2.36-12
[13] tools_2.15.0 XML_3.9-4
[15] zlibbioc_1.1.1

33

	Introduction
	Goals
	Description of data

	Evaluating the Capture Technologies
	Overall capture quality evaluation
	Capture Enrichment
	Base-level coverage
	Visualizing Coverage in Genomic Context
	GC Content and Coverage

	Evaluating Variant Calls
	The VCF Format
	1000 Genomes Data
	Using Known Sites As a Quality Metric
	Using Transition/Transversion Ratio To Estimate False Positive Rate

	NCI60 Data
	Exercises

	Using SRAdb to Interact With the IGV Browser
	sessionInfo

