

# **Technologies for DNA methylation profiling**



e High-throughput sequencing.



- Advantage: Single base resolution.
- www.diagenode.com/en/applications/ bisulfite-conversion.php
- Disadvantage: Whole genome-wide bisulphite sequencing (WGBS) is very expensive and inefficient.
- Methylation arrays are an alternative, but provide less coverage and are only available for human.

## Affinity-capture-based approaches

strike good balance between high cost of WGBS and the low coverage of methylation arrays.



The number of reads mapping to 100bp bins, say, is counted.

#### ⇒ DISCRETE DATA

- Read density not directly interpretable.
- Dependence on CpG density.
- Methods for microarrays not applicable.

BayMeth

Andrea Riebler (University of Zurich)

# Statistical analysis: Available software packages

| Software | Reference                        | Implementation   |
|----------|----------------------------------|------------------|
| Batman   | Down et al. (Nat Biotech, 2008)  | Java             |
| MEDIPS   | Chavez et al. (Genome Res, 2010) | R / Bioconductor |
| BALM     | Lan et al. (PLoS ONE, 2011)      | C++              |

A new method is desired that

- can distinguish inefficient capture from low methylation,
- gives variance estimates,
- accounts for copy-number-variations,
- is computationally light,

- is integrated into public domain and open source software (e.g. Bioconductor) to be directly applicable to routine tasks.

Page 3 of 16

## Idea: Borrow strength from control information

Use an artificially full methylated (SssI-treated) control sample

- to learn where the immunoprecipitation assay works.
- to interpret the read density.



# **BayMeth: Model formulation**



We consider genomic regions i = 1, ..., n and define

- $y_{i,C}$ : Number of reads for the fully methylated (SssI) control.
- $y_{i,S}$ : Number of reads for the sample of interest.

 $y_{i,C}|\lambda_i \sim \text{Poisson}(\lambda_i); \qquad y_{i,S}|\lambda_i, \mu_i \sim \text{Poisson}(f \times \lambda_i \times \mu_i)$ 

with

- $\lambda_i$ : region-specific read density
- $\mu_i$ : the regional methylation level (Main parameter of interest)
  - f: known relative offset.

### Model formulation (II): Prior distributions

In a Bayesian framework, prior distributions are assigned to all parameters.

• For  $\mu_i$ : a (mixture of) beta distributions:

$$\mu_i \sim \sum_{m=1}^{M} w_m \operatorname{Beta}(a_m, b_m),$$



with  $0 \le w_m \le 1$ , and  $\sum_{m=1}^{M} w_m = 1$ .

(In the simplest case a uniform prior: M = 1,  $a_m = b_m = 1$ ).

• For  $\lambda_i$ : a gamma distribution with shape  $\alpha$ , rate  $\beta$ .

Andrea Riebler (University of Zurich)

BayMeth

Page 7 of 16

# **Closed-form posterior marginal distribution**

Notably, the marginal posterior distribution of the methylation level:

$$p(\mu_i | \mathbf{y}_{i,S}, \mathbf{y}_{i,C}) = \int_0^\infty \underbrace{p(\lambda_i, \mu_i | \mathbf{y}_{i,S}, \mathbf{y}_{i,C})}_{\text{cond.indep}} d\lambda_i$$
$$\stackrel{\text{cond.indep}}{=} \int_0^\infty \frac{p(\lambda_i) p(\mu_i) p(\mathbf{y}_{i,C} | \lambda_i) p(\mathbf{y}_{i,S} | \lambda_i, \mu_i)}{p(\mathbf{y}_{i,S}, \mathbf{y}_{i,C})} d\lambda_i.$$

is available in closed form.

#### Summary estimates:

- Posterior mean and variance are analytically available and efficient to compute.
- Credible intervals can be computed numerically.

## Find prior parameters using empirical Bayes (EB)

**Specify prior format for**  $\mu_i$  (i.e. number of beta components).

- Oivide regions into groups based on:
  - CpG density.
  - Sequence context (promoter, gene body, rest).

Oetermine parameters using EB for each group (in parallel).



## Software: Integration into Repitools-package

- Implementation in R.
- S4 class system.
- Computationally demanding tasks are done in C.
- Parallelisation over bins using the R-package snowfall.
- Integration into the Bioconductor R-package Repitools is in progress, so that it is soon available for routine tasks.

## Data flow (in progress)

| <pre>&gt; showClass("BayMethList")</pre>                                                              |         |          |                |         |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------|----------|----------------|---------|--|--|--|
| Class "BayMethList" [package "Repitools"]                                                             |         |          |                |         |  |  |  |
| Slots:                                                                                                |         |          |                |         |  |  |  |
| Name:                                                                                                 | windows | control  | sampleInterest | cpgDens |  |  |  |
| Class:                                                                                                | GRanges | matrix   | matrix         | numeric |  |  |  |
|                                                                                                       |         |          |                |         |  |  |  |
| Name:                                                                                                 | f       | priorTab | methEst        |         |  |  |  |
| Class:                                                                                                | matrix  | list     | list           |         |  |  |  |
| <pre>&gt; bm &lt;- BayMethList(windows=windows, control=co, sampleInterest=sI, cpgDens=cpgdens)</pre> |         |          |                |         |  |  |  |
| > ## Estimate the normalising offset f based on an MA-plot.                                           |         |          |                |         |  |  |  |
| <pre>&gt; bm &lt;- determineOffset(bm, controlPlot=list(show=FALSE,</pre>                             |         |          |                |         |  |  |  |
| + nsamp=50000, mfrow=c(1,1), ask=FALSE))                                                              |         |          |                |         |  |  |  |
| > ## Derive prior parameters using EB for "ngroups" CpG density classes.                              |         |          |                |         |  |  |  |
| > ## Use a mixture with "ncomp" components for the methylation level.                                 |         |          |                |         |  |  |  |
| <pre>&gt; bm &lt;- empBaves(bm, ngroups=100, ncomp=1, ncpu=NULL)</pre>                                |         |          |                |         |  |  |  |
|                                                                                                       |         |          |                |         |  |  |  |
| > ## Get mean and variance estimates and potentially credible intervals.                              |         |          |                |         |  |  |  |
| <pre>&gt; bm &lt;- methylEst(bm, ncomp=1, controlCl=list(compute=FALSE, method="quantile",</pre>      |         |          |                |         |  |  |  |
| + level=0.95, ncpu=NULL,))                                                                            |         |          |                |         |  |  |  |

Mean and variance derivation in a genome-wide analysis  $\approx$  3 min.

| Andrea Riebler (University of Zurich) | BayMeth | Page 11 of 16 |
|---------------------------------------|---------|---------------|
|---------------------------------------|---------|---------------|

# **Applications: Lung fibroblast cell line (IMR-90)**



Lister et al., 2009, Nature



#### **Performance assessment**





- Best performance in terms of:
  - correlation,
  - bias,
  - coverage probabilities.

| Andrea Riebler (University of Zurich) | BayMeth | Page 13 of 16 |
|---------------------------------------|---------|---------------|
|                                       |         |               |

## Prostate cancer cell line (genomewide)

Let cn<sub>*i*</sub> be the regional copy number state and ccn the most prominent state:

$$y_{i,S}|\mu_i, \lambda_i \sim \text{Poisson}(f \times \text{cn}_i / \text{ccn} \times \mu_i \times \lambda_i);$$



#### **Summary and Discussion**

- Presentation of a novel Bayesian approach for affinity-capture-based DNA methylation analysis, which
  - leads to analytical expressions for the mean and variance.
  - provides credible intervals.
  - allows us to explicitly model copy number variation.
  - is user-friendly and computationally efficient.
- Broad utility of the method due to need of SssI control?
  - Better outcome compensates for a bit more work/money.
  - Making Sssl control data available that others can utilise.

Andrea Riebler (University of Zurich)

BayMeth

Page 15 of 16

## Acknowledgments

- Mark Robinson
- Sue Clark, Jenny Song, Aaron Statham, Clare Stirzaker, Mirco Menigatti, Nadiya Mahmud, Charles Mein.
- Financial support by the "URPP-Grant" and the "Forschungskredit" for young researchers of the University of Zurich.

#### Thank you for your attention!