

Integrated Analysis Of ChIP-seq/chip using ChIPpeakAnno and GeneNetworkBuilder

Bioconductor Developer Meeting Zurich, Switzerland December 13th -14th 2012

Lihua Julie Zhu

Outline

- Introduction of ChIP-seq and ChIPchip analysis workflow
- ChIPpeakAnno
- GeneNetworkBuilder
- Analysis of DAF-12 ChIP-chip and Expression Dataset

HIGH-THROUGHPUT IDENTIFICATION OF DNA BINDING SITES

- ChIP-seq
 - ChIP followed by high-throughput sequencing
- ChIP-chip
 - ChIP followed by genome tiling array analysis

ANALYSIS WORKFLOW

CHIPPEAK**A**NNO

- Batch annotate enriched peaks
 - ChIP-seq
 - ChIP-chip
 - PAS-seq (Poly(A) Site Sequencing)
 - Cap Analysis of Gene Expression (CAGE)
 - Any experiments resulting in a large number of enriched genomic regions

CHIPPEAKANNO

- Find the nearest genes for each set of peaks and graph the distribution around features.
- Find all genes within a certain distance from the peaks
- Identify enriched Gene Ontology (GO) terms and pathways associated with adjacent genes of the peaks.
- Label peaks with any annotation of interest
 - a dataset from the literature
 - CpG island
 - conserved element
 - histone modification marks
- Determine the significance of overlap and drawing Venn diagrams to visualize the extent of the overlap
 - binding sites among replicates
 - binding sites among transcription factors within a complex
 - binding sites among different experiments such as yours and the ones in literature
- Retrieve genomic sequences flanking putative binding sites for motif discovery, cloning or PCR amplification
- · Find the peaks with bi-directional promoters with summary statistics
- Summarize motif occurrence in peaks

GENENETWORKBUILDER

DAF-12 EXAMPLE DATASET

 ChIP-chip peaks were downloaded from GEO at

http://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE28350 (Hochbaum, Zhang et al. 2011, PLoS Genet **7**(7): e1002179)

 Expression Microarray results were downloaded from (Fisher and Lithgow 2006, <u>Aging Cell</u> 5(2): 127-138).

University of Massachusetts UMASS.Medical School

DISTRIBUTION OF DAF-12-BINDING SITES

Chromosome Region

GO ID	GO Term	GO Definition	Category	FDR
		Interacting selectively and		
	1	non-covalently with any		
	1	protein or protein complex		
1	1	(a complex of two or more		
1	1	proteins that may include		
1	1	other nonprotein		
GO:0005515	protein binding	molecules).	MF	4.85E-08
1		The action of a molecule		
	structural	that contributes to the		
	constituent of	structural integrity of the		
GO:0003735	ribosome	ribosome.	MF	0.0002
1		The process whose specific		
	1	outcome is the progression		
	1	of the nematode larva over		
		time, from its formation to		
	1	the mature structure.		
	1	Nematode larval		
	1	development begins with		
		the newly hatched first-		
	1	stage larva (L1) and ends		
	1	with the end of the last		
	1	larval stage (for example the		
	1	Tourth larval stage (L4) in		
		C. elegans). Each stage of		
		nematode larval		
		development is		
	1	characterized by		
	1	proliferation of specific cell		
	1	inneages and an increase in		
	1	body size without alteration		
		of the basic body plan.		
		Nematode larval stages are		
		separated by molts in which		
	nematode	each stage-specific		
GO:0002110	development	shad and replaced	БВ	0.0012
00:0002119		The process whose specific	Dr	0.0013
	1	outcome is the progression		
	1	of the larva over time from		
	1	its formation to the mature		
	larval	structure. The larva is the		
GO:0002164	development	early, immature form of an	BP	0.0013

Table 2. Enriched GO molecular functions and biological processes of DAF-12binding sites in worm ordered by false discovery rate (FDR).

Table 3. Enriched pathways in reactome database for DAF-12 binding sites in worm ordered by FDR. Pathway

Pathway		
ID	Pathway Definition	FDR
	Caenorhabditis elegans: Regulation of gene expression	
1626134	in beta cells	0.004
1626136	Caenorhabditis elegans: Diabetes pathways	0.004
1625991	Caenorhabditis elegans: Peptide chain elongation	0.004
	Caenorhabditis elegans: Eukaryotic Translation	
1625992	Elongation	0.004
	Caenorhabditis elegans: GTP hydrolysis and joining of	
1625772	the 60S ribosomal subunit	0.006
	Caenorhabditis elegans: Regulation of beta-cell	
1626131	development	0.006
	Caenorhabditis elegans: Eukaryotic Translation	
1625983	Termination	0.007
	Caenorhabditis elegans: Insulin Synthesis and	
1626135	Processing	0.023
1625880	Caenorhabditis elegans: Developmental Biology	0.032
	Caenorhabditis elegans: Formation of a pool of free	
1625773	40S subunits	0.036

DAF-12 REGULATORY NETWORK

SUMMARY

- Analysis of the DAF-12 example dataset shows that enriched GO terms and interaction pathways are consistent with the known functions of DAF-12.
- Network analysis, using GeneNetworkBuilder with ChIP data and expression data, generated a system-level view of the intertwined connections among the direct and indirect targets of DAF-12, which shows that DAF-12 is a master regulator.

ACKNOWLEDGEMENT

- Mark Robinson for the invitation and hospitality
- The Bioconductor package
 reviewers
 - Nishant Gopalak
 - Marc Carlson
 - Paul Shannon
- Coauthors
 - Jianhong Ou (Developer of GeneNetworkBuilder), Claude Gazin, Nathan Lawson, Hervé Pagès, Simon Lin, David Lapointe, Michael Green

- The users of the *ChIPpeakAnno*
- The Bioconductor core team, esp.,
 - Patrick Aboyoun
 - Vincent Carey
 - Martin Morgan
- Ivan Gregoretti
- Amy Molesworth
- Khademul Islam
- Hua Li
- Noah Dowell
- Yin Wu
- Zhiping Weng, Sara Evans, Alan Ritacco, Glenn Maston, Ping Wan, Ellen Kittler

