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Increasing interest in biological networks
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Types of biological networks by origin

Built from literature: natural extension of functional annotations on
genes to functional annotations on interactions. (not covered here)

Built from high-throughput experimental data: natural extension of
univariate, or bivariate, exploratory analyses (e.g., density estimation,
clustering) to multivariate models (analogous to principal components
analysis -PCA-). This is the goal of the package qpgraph described in
this workshop.
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Inferring molecular regulatory networks from
high-throughput genomics data
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Properties of biological networks

Biological networks have been characterized in many different ways,
demonstrating that they can follow higher-order organizational
principles. Here we assume two simple properties of biological networks.

Sparseness: the fraction of interactions present in a specific cellular
state under study is much smaller than the total number of possible
interactions.

High-dimension: the number p of interacting entities (genes, proteins,
SNPs, etc.) is very high and, in general, much larger than the number n
of experimental samples available for estimating the network: the p � n
problem.
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A motivating example with data from Escherichia coli

Escherichia coli (E. coli) is the free-living organism for which a largest
part of its transcriptional regulatory network is supported by some sort
of experimental evidence.

The database RegulonDB (Gama-Castro et al., 2011) provides a curated
set of transcription factor and target gene relationships that can be used
as gold-standard for comparing different network inference approaches.

We are going to use a microarray data set from Covert et al. (2004)
with n=43 samples monitoring the response from E. coli during an
oxygen shift.

The experimental setup aimed at targeting the a priori most relevant
part of the underlying regulatory network by using six strains with
knockouts of key transcriptional regulators in the oxygen response:
∆appY, ∆fnr, ∆oxyR, ∆soxS and the double knockout ∆arcA∆fnr.
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A motivating example with data from Escherichia coli

Load the following packages:
> library(Biobase)
> library(Rgraphviz)
> library(qpgraph)
> library(org.EcK12.eg.db)

Load and explore the E. coli data contained in the package:
> data(EcoliOxygen)
> ls()

[1] "filtered.regulon6.1" "gds680.eset"
[3] "subset.filtered.regulon6.1" "subset.gds680.eset"

> gds680.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 4205 features, 43 samples
element names: exprs

protocolData: none
phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db
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A motivating example with data from Escherichia coli

We are going to focus on the subnetwork formed by the KO TFs and
their target genes, as defined by RegulonDB:
> subset.gds680.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 378 features, 43 samples
element names: exprs

protocolData: none
phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db

> dim(subset.filtered.regulon6.1)

[1] 681 5
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A motivating example with data from Escherichia coli

Select the top 100 genes with largest variability through these
expression data:
> IQRs <- esApply(subset.gds680.eset, 1, IQR)
> top100IQRgenes <- names(sort(IQRs, decreasing=TRUE))[1:100]
> eset100 <- subset.gds680.eset[top100IQRgenes, ]
> eset100

ExpressionSet (storageMode: lockedEnvironment)
assayData: 100 features, 43 samples
element names: exprs

protocolData: none
phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db

Build the corresponding subset of the RegulonDB gold-standard:
> maskTF <- subset.filtered.regulon6.1$EgID_TF %in% top100IQRgenes
> maskTG <- subset.filtered.regulon6.1$EgID_TG %in% top100IQRgenes
> regulon100 <- subset.filtered.regulon6.1[maskTF & maskTG, ]
> dim(regulon100)

[1] 128 5
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A motivating example with data from Escherichia coli

Estimate Pearson correlation coefficients (PCCs) between the all pairs
of genes:
> pcc.est <- cor(t(exprs(eset100)))
> dim(pcc.est)

[1] 100 100

> pcc.est[1:5,1:5]

948403 945316 945322 945507 945402
948403 1.0000000 0.6434955 0.6086180 -0.8740256 0.6391599
945316 0.6434955 1.0000000 0.9966337 -0.6577484 0.9971261
945322 0.6086180 0.9966337 1.0000000 -0.6221307 0.9941381
945507 -0.8740256 -0.6577484 -0.6221307 1.0000000 -0.6535775
945402 0.6391599 0.9971261 0.9941381 -0.6535775 1.0000000

Using a high cutoff value on the absolute PCCs we can easily obtain a
network of strongly correlated gene pairs using the qpgraph function
qpAnyGraph():
> pcc.g <- qpAnyGraph(abs(pcc.est), threshold=0.75, return.type="graphNEL")
> pcc.g

A graphNEL graph with undirected edges
Number of Nodes = 95
Number of Edges = 2043

Plot the network with Rgraphviz and the qpgraph function
qpPlotNetwork():
> qpPlotNetwork(pcc.g, annotation="org.EcK12.eg.db")

Robert Castelo (robert.castelo@upf.edu) Inferring molecular regulatory networks with qpgraph

mailto:robert.castelo@upf.edu


A motivating example with data from Escherichia coli

Network built from all pairs of genes (i , j) such that their absolute PCCs
|ρij | > 0.75.
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A motivating example with data from Escherichia coli

A straightforward approach to remove non-interesting (because, e.g., we
cannot interpret them), and possibly spuriously, correlated pairs of
genes, is to discard edges where no TF is involved:
> TGgenes <- setdiff(featureNames(eset100), regulon100[, "EgID_TF"])
> allTGpairs <- as.matrix(expand.grid(list(TGgenes, TGgenes)))
> pcc.est[allTGpairs] <- NA

Select the network using the same minimum cutoff value and plot it
again:
> pcc.g <- qpAnyGraph(abs(pcc.est), threshold=0.75, return.type="graphNEL")
> pcc.g

A graphNEL graph with undirected edges
Number of Nodes = 74
Number of Edges = 71

> qpPlotNetwork(pcc.g, annotation="org.EcK12.eg.db")

The qpgraph function qpPCC() calculates all pairwise PCCs and their
p-values and returns them in a list with two dspMatrix objects that only
store the upper triangle of these two matrices.
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A motivating example with data from Escherichia coli

Network built from pairs of genes (i , j) with at least one TF such that their
absolute PCCs |ρij | > 0.75.
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A motivating example with data from Escherichia coli

Let’s consider now building a network out of connecting genes by pure
chance. This can be accomplished by simply generating pairwise
correlations uniformly at random, as follows:
> set.seed(123)
> rnd.est <- matrix(runif(nrow(pcc.est)^2, min=-1, max=1),
+ nrow=nrow(pcc.est), dimnames=dimnames(pcc.est))
> rnd.est <- (rnd.est + t(rnd.est)) / 2
> dim(rnd.est)

[1] 100 100

> rnd.est[1:5,1:5]

948403 945316 945322 945507 945402
948403 -0.4248450 0.38829409 -0.3522971 0.66759267 0.9265216
945316 0.3882941 -0.33435292 0.4509720 -0.03609627 -0.3800301
945322 -0.3522971 0.45097197 0.2027315 0.29409561 0.3078829
945507 0.6675927 -0.03609627 0.2940956 0.45878130 0.2064337
945402 0.9265216 -0.38003013 0.3078829 0.20643369 -0.2091023

Analogously to what we did before, we discard edges where no TF is
involved, select a network with the same minimum cutoff and plot it:
> rnd.est[allTGpairs] <- NA
> rnd.g <- qpAnyGraph(abs(rnd.est), threshold=0.75, return.type="graphNEL")
> rnd.g

A graphNEL graph with undirected edges
Number of Nodes = 29
Number of Edges = 28

> qpPlotNetwork(rnd.g, annotation="org.EcK12.eg.db")
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A motivating example with data from Escherichia coli

Network built from pairs of genes (i , j) with at least one TF such that
uniformly random correlations |ρij | > 0.75.
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A motivating example with data from Escherichia coli

Since we are analyzing E. coli data, we can use the RegulonDB
gold-standard to assess the accuracy of each network inference method
by means of precision-recall curves.

For this purpose, the qpgraph package provides the function
qpPrecisionRecall():
> pcc.pr <- qpPrecisionRecall(abs(pcc.est), refGraph=regulon100[, 3:4])
> rnd.pr <- qpPrecisionRecall(abs(rnd.est), refGraph=regulon100[, 3:4])

We can plot the resulting curves as follows:
> plot(pcc.pr, type="b", lwd=2, pch=25, xlab="Recall", ylab="Precision", bg="black")
> lines(rnd.pr, type="l", lwd=2, lty=2, bg="black")
> legend("topright", c("PCC", "Random"), lwd=2, pch=c(25, -1),
+ lty=c(1, 2), pt.bg="black", inset=0.01)
> TFgenes <- setdiff(featureNames(eset100), TGgenes)
> nrow(regulon100)

[1] 128

> totalPossibleEdges <- length(TFgenes) * length(TGgenes) + choose(length(TFgenes), 2)
> totalPossibleEdges

[1] 485

> abline(h=nrow(regulon100) / totalPossibleEdges, lwd=2, lty=3)

where the last call to abline() draws a dotted line at the baseline
performance obtained by predicting all possible edges as present.
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A motivating example with data from Escherichia coli

Assessment of performance with precision-recall curves: predict-
ing edges uniformly at random works in this case better than using PCCs.
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Undirected Gaussian graphical Markov models

Assume that gene expression profiles form an independent and
identically distributed (iid) multivariate normal (Gaussian) sample.

Let XV = {X1, . . . ,Xp} be a vector of continuous random variables
representing genes such that

XV ∼ P(XV ) ≡ N (µ,Σ) .

where

µ is the p-dimensional mean vector parameter;
Σ = {σij}p×p is the covariance matrix;
Σ−1 = K = {κij}p×p is the concentration, also known as precision,
matrix.

Pearson and partial correlations can be calculated by scaling the
covariance and concentration matrix, respectively, as follows:

ρij =
σij√
σiiσjj

ρij.R =
−κij√
κiiκjj

,R = V \{i , j} .
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Undirected Gaussian graphical Markov models

Consider genes X ,Y ,Z where X ,Y are transcription factors, X
regulates Y and Y regulates Z , creating an indirect effect of X on Z :
> set.seed(123)
> X <- rnorm(100)
> Y <- X * 2 + rnorm(100)
> Z <- Y * 2 + rnorm(100)

Plot the expression of X against Z and notice the high marginal
(Pearson) correlation:
> cov2cor(cov(cbind(X, Y, Z)))

X Y Z
X 1.0000000 0.8786993 0.8453189
Y 0.8786993 1.0000000 0.9725512
Z 0.8453189 0.9725512 1.0000000

> cor(X, Z)

[1] 0.8453189

> plot(X, Z)

X Y Z
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10
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5
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5
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However, X and Z are only marginally dependent and, in fact, they are
conditionally independent given Y .
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Undirected Gaussian graphical Markov models

Partial correlations allow one to estimate the association between two
variables adjusting for the remaining ones:
> -cov2cor(solve(cov(cbind(X,Y,Z))))

X Y Z
X -1.00000000 0.4551541 -0.08337355
Y 0.45515415 -1.0000000 0.90090474
Z -0.08337355 0.9009047 -1.00000000

They can be interpreted using a so-called
partial regression plot:
> fitX <- lm(X ~ Y)
> fitZ <- lm(Z ~ Y)
> plot(resid(fitX), resid(fitZ),
+ xlab="Residuals X ~ Y",
+ ylab="Residuals Z ~ Y")
> cor.test(resid(fitX), resid(fitZ))

Pearson's product-moment correlation

data: resid(fitX) and resid(fitZ)
t = -0.8282, df = 98, p-value = 0.4095
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.2752836 0.1149266
sample estimates:

cor
-0.08337355
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Undirected Gaussian graphical Markov models

Let G = (V ,E ) be an undirected graph with V = {1, . . . , p}, a
Gaussian graphical model can be described as follows:

Σ−1 =


κ11 κ12 0 0 0
κ21 κ22 κ23 κ24 0
0 κ32 κ33 0 κ35

0 κ42 0 κ44 κ45

0 0 κ53 κ54 κ55


2

4

5

1

3

A probability distribution P(XV ) is undirected Markov w.r.t. G if

(i , j) 6∈ E ⇒ κij = 0 ⇔ Xi⊥⊥Xj |XV \{Xi ,Xj}

These models are also known as covariance selection models (Dempster,
1972) or concentration graph models (Cox and Wermuth, 1996).

Two vertices i and j are separated in G by a subset S ⊂ V \{i , j} iff
every path between i and j intersects S , denoted hereafter by i⊥G j |S .

Global Markov property (Hammersley and Clifford, 1971):

i⊥G j |S ⇒ Xi⊥⊥Xj |XS .
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Undirected Gaussian graphical Markov models

Let’s verify this by simulating a covariance matrix with the qpgraph
function qpG2Sigma():
> G <- matrix(c(0,1,0,0,0,1,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,1,0),
+ nrow=5, dimnames=list(1:5, 1:5))
> G

1 2 3 4 5
1 0 1 0 0 0
2 1 0 1 1 0
3 0 1 0 0 1
4 0 1 0 0 1
5 0 0 1 1 0

> set.seed(123)
> Sigma <- qpG2Sigma(G, rho=0.5)
> round(solve(Sigma), digits=2)

1 2 3 4 5
1 0.79 -0.56 0.00 0.00 0.00
2 -0.56 5.35 -2.77 -0.85 0.00
3 0.00 -2.77 2.65 0.00 -0.35
4 0.00 -0.85 0.00 1.38 -0.60
5 0.00 0.00 -0.35 -0.60 2.50

Note that the mean marginal (Pearson) correlation between variables
connected in G also approaches the nominal value rho=0.5:
> mean(cov2cor(as.matrix(Sigma))[upper.tri(as.matrix(Sigma)) & G])

[1] 0.5604867

2

4

5

1

3
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Undirected Gaussian graphical Markov models

Sample lots of observations (n� p) from this multivariate Gaussian
distribution and try to infer the present and missing edges from the
graph by estimating the pattern of zeroes in the concentration matrix:

> library(mvtnorm)
> set.seed(123)
> X <- rmvnorm(n=50000, sigma=as.matrix(Sigma))
> dim(X)

[1] 50000 5

> S <- cov(X)
> round(solve(S), digits=2)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.79 -0.56 0.00 0.00 -0.01
[2,] -0.56 5.35 -2.78 -0.83 0.01
[3,] 0.00 -2.78 2.65 0.00 -0.36
[4,] 0.00 -0.83 0.00 1.37 -0.60
[5,] -0.01 0.01 -0.36 -0.60 2.49

> mean(cov2cor(S)[upper.tri(S) & G])

[1] 0.5598355
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Undirected Gaussian graphical Markov models

Now with fewer observations but still with n > p:
> set.seed(123)
> X <- rmvnorm(n=50, sigma=as.matrix(Sigma))
> dim(X)

[1] 50 5

> S <- cov(X)
> round(solve(S), digits=2)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.95 -0.59 -0.12 0.02 0.28
[2,] -0.59 5.85 -2.68 -0.76 0.28
[3,] -0.12 -2.68 2.58 -0.09 -0.42
[4,] 0.02 -0.76 -0.09 1.72 -1.16
[5,] 0.28 0.28 -0.42 -1.16 3.15

Perform a hypothesis test H0 : ρij.R = 0 using the qpCItest() function:
> qpCItest(X, i=1, j=5, Q=2:4, long.dim.are.variables=FALSE)

Conditional independence test for continuous data using a t test for
zero partial regression coefficient

data: 1 and 5 given {2, 3, 4}
t = -1.0837, df = 45, p-value = 0.2843
alternative hypothesis: true partial regresion coefficient is not equal to 0
sample estimates:

beta
-0.2903989

> coef(lm(X[,1] ~ X[,2]+X[,3]+X[,4]+X[,5]))

(Intercept) X[, 2] X[, 3] X[, 4] X[, 5]
0.03864379 0.61982129 0.12406899 -0.01774059 -0.29039886
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Undirected Gaussian graphical Markov models

Sample fewer observations than random variables:

> set.seed(123)
> X <- rmvnorm(n=4, sigma=as.matrix(Sigma))
> dim(X)

[1] 4 5

> S <- cov(X)

> round(solve(S), digits=2)

Error in solve.default(S) :
system is computationally singular: reciprocal condition number = 2.12472e-18

> qr(S)$rank

[1] 3
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Undirected Gaussian graphical Markov models

Conditions for the existence of the maximum likelihood estimate (MLE)
of K ≡ Σ−1:

to estimate K̂ = S−1, the sample covariance matrix S must have full
rank. This only happens if and only if n > p (Dykstra, 1970).
K̂ exists iff w(G), the size of a maximum clique in G , is smaller than n
(w(G) < n), with G being decomposable (Lauritzen, 1996):

1 2

3 4

1 2

3 4
non-decomposable graph decomposable graph

The function qpPAC() enables this later approach:
> round(qpPAC(X, G, verbose=FALSE)$R, digits=2)

5 x 5 Matrix of class "dspMatrix"
1 2 3 4 5

1 1.00 0.51 0.00 0.00 0.00
2 0.51 1.00 0.51 -0.51 0.00
3 0.00 0.51 1.00 0.00 0.46
4 0.00 -0.51 0.00 1.00 0.32
5 0.00 0.00 0.46 0.32 1.00

Robert Castelo (robert.castelo@upf.edu) Inferring molecular regulatory networks with qpgraph

mailto:robert.castelo@upf.edu


Undirected Gaussian graphical Markov models

Main types of approaches to the problem of estimating a Gaussian
graphical model from data with p � n:

Bayesian approaches with sparsity inducing priors
(e.g., Dobra et al., J. Mult. Anal., 2004).

shrinkage estimate of the covariance matrix
(e.g., Schäfer and Strimmer, Stat. Appl. Genet. Mol. Biol., 2005).

dimension reduction
(e.g., Segal et al., J. Mach. Learn. Res., 2005).

limited-order partial correlations
(e.g., Castelo and Roverato et al., J. Mach. Learn. Res., 2006).

lasso estimate of the inverse covariance matrix
(e.g., Friedman et al., Biostatistics, 2008).
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q-order partial correlation graphs – qp-graphs

Instead of using full-order partial correlations, we can employ
limited-order partial correlations by using subsets

Q ⊆ R = V \{i , j}, |Q| = q, q < (n − 2) .

Limited-order partial correlations allow us to test H0 : ρij.Q = 0 with
standard techniques, such that

ρij.Q = 0⇐⇒ Xi⊥⊥Xj |XQ .

The rationale behind is that if the underlying network G is sufficiently
sparse, we can expect to identify many missing edges with ρij.Q , i.e.,
accepting many tests H0 : ρij.Q = 0.

From another perspective, we will work using marginal distributions of
size (q + 2) < n.
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q-order partial correlation graphs – qp-graphs

Definition of a q-order partial correlation graph, or qp-graph for short
(Castelo and Roverato, 2006):

Underlying G represent-
ing full-order partial cor-
relations

qp-graph G (q) repre-
senting q-order partial
correlations

2

4

5

1

3 4

5

12

3
|Q| <= q?

G associated to P(XV ) G (q) associated to all
marginal distributions
PQ(XV ) of size (q + 2).
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q-order partial correlation graphs – qp-graphs

qp-graphs are an approximation to the underlying graph G :

2

4

5

1

3
4

5

12

3
|Q| <= q?

2

3 4

5

1

2

3 4

5

1

2

4

5

1

3

G G (q) G (0) G (1) G (2)

Assuming faithfulness of P(XV ) to G (Castelo and Roverato, 2006):

If r ≤ q then G (r) will be always larger than G (q), it will have more edges.

G (q) is always going to be larger than G .

P(XV ) is Markov w.r.t. G (q).
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Learning qp-graphs with the non-rejection rate

The qpgraph package implements a statistical procedure to learn
qp-graphs using the so-called non-rejection rate, or NRR for short.

The NRR is a measure of linear association between two variables (i , j)
over all marginal distributions of size (q + 2) defined by all subsets
Qij = {Qk : Qk ⊆ V \{i , j}, |Qk | = q} with |Qij | =

(
p−2
q

)
= m.

Let T q
ij be a binary random variable taking values tQ1

ij , . . . , t
Qm

ij as
follows. For every subset Q ∈ Qij of size q, test H0 : ρij.Q = 0 (i.e.,
H0 : Xi⊥⊥Xj |XQ) and, using a significance level α, decide:

(i) if H0 is rejected then T q
ij takes value 0;

(ii) if H0 is accepted then T q
ij takes value 1.

The sample NRR equals the arithmetic mean value of non-rejections:

NRR(i , j |q) :=
1

m

m∑
k=1

tQk

ij .

Since m can be very large, the estimation of the sample NRR is
performed with a Monte Carlo method by sampling a limited number of
subsets Q ∈ Qij , e.g., 100, uniformly at random.
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Learning qp-graphs with the non-rejection rate

NRR values can be estimated with the function qpNrr(). Let’s come
back to the E. coli motivating example:
> nrr.q5 <- qpNrr(eset100, q=5, pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ verbose=FALSE)
> nrr.q15 <- qpNrr(eset100, q=15, pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ verbose=FALSE)

As n− q grows large, NRR values converge to 0 for (i , j) ∈ G . However,
all NRR values increase as q approaches n − 2.
> mask <- matrix(FALSE, nrow=100, ncol=100, dimnames=dimnames(nrr.q15))
> mask[as.matrix(regulon100[, 3:4])] <- TRUE
> par(mfrow=c(1, 2))
> boxplot(list(Present=as.matrix(nrr.q5)[mask], Absent=as.matrix(nrr.q5)[!mask]),
+ main="q=5", col="grey", ylab="NRR")
> boxplot(list(Present=as.matrix(nrr.q15)[mask], Absent=as.matrix(nrr.q15)[!mask]),
+ main="q=15", col="grey", ylab="NRR")
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Learning qp-graphs with the non-rejection rate

Assess performance again with precision-recall curves:
> nrr.q5.pr <- qpPrecisionRecall(nrr.q5, refGraph=regulon100[, 3:4], decreasing=FALSE)
> nrr.q15.pr <- qpPrecisionRecall(nrr.q15, refGraph=regulon100[, 3:4], decreasing=FALSE)
> par(mfrow=c(1, 1))
> plot(pcc.pr, type="b", lwd=2, pch=25, xlab="Recall", ylab="Precision", bg="black")
> lines(rnd.pr, type="l", lwd=2, lty=2, bg="black")
> lines(nrr.q5.pr, type="b", lwd=2, pch=24, bg="black")
> lines(nrr.q15.pr, type="b", lwd=2, pch=23, bg="black")
> legend("topright", c("PCC", "Random", "NRR q=5", "NRR q=15"), lwd=2,
+ pch=c(25, -1, 24, 23), lty=c(1, 2, 1), pt.bg="black", inset=0.01)
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Learning qp-graphs with the non-rejection rate

Select a network at certain precision level and explore its contents:
> nrr.thr.q5 <- qpPRscoreThreshold(nrr.q5.pr, level=0.5, recall.level=FALSE, max.score=0)
> nrr.g.q5 <- qpGraph(nrr.q5, threshold=nrr.thr.q5, return.type="graphNEL")
> nrr.g.q5

A graphNEL graph with undirected edges
Number of Nodes = 57
Number of Edges = 63

> qpTopPairs(nrr.q5[nodes(nrr.g.q5), nodes(nrr.g.q5)],
+ nrr.g.q5, annotation="org.EcK12.eg.db",
+ n=10)

i j iSymbol jSymbol x
1 945908 947068 fnr yfiD 0.00000000
2 944981 947376 betI betB 0.00000000
3 945585 948797 appC appY 0.00000000
4 946540 948797 flu appY 0.00000000
5 947547 948797 appB appY 0.00000000
6 948336 948874 fadB arcA 0.00000000
7 948857 948874 glcB arcA 0.03157895
8 945572 948797 hyaF appY 0.06593407
9 945908 946540 fnr flu 0.12500000
10 945908 947390 fnr gcvT 0.15053763

> qpPlotNetwork(nrr.g.q5, annotation="org.EcK12.eg.db")
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Learning qp-graphs with the non-rejection rate

Formally, T q
ij is a Bernoulli random variable and the NRR can be

defined as its expectancy:

NRR(i , j |q) := E[T q
ij ] = Pr(T q

ij = 1) .

This theoretical value can be described as follows, let

Pr(T q
ij = 1|Q) =

{
(1− α) if Q separates i and j in G ;

βij.Q otherwise;

where α and βij.Q are the probability of the first and second type error
of the test, respectively.

Let Qij be the collection of all possible subsets Q of size q, then by the
law of total probability,

Pr(T q
ij = 1) =

∑
Q∈Qij

Pr(T q
ij = 1|Q)Pr(Q) ,
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Learning qp-graphs with the non-rejection rate

Assuming that if |Qij | = m then Pr(Q) = 1/m, it can be shown that:

Pr(T q
ij = 1) = βq

ij (1− πq
ij ) + (1− α)πq

ij ,

where βq
ij is the mean value of all the Type-II errors βij.Q and πq

ij is the
fraction of subsets Q that separate i and j in G .

The values βq
ij and πij are unkown but it can be shown that

βq
ij ≤ (1− α) implies that the NRR is an upper bound to both values:

NRR(i , j |q) := βq
ij ≤ NRR(i , j |q) and πij ≤

NRR(i , j |q)

1− α
.

Hence, a value of the non-rejection rate for a pair of genes that is close
to zero implies both

(i) the probability that a subset of q genes separates the genes in the
network is close to zero.

(ii) for those sets Q ∈ Qij with ρij.Q 6= 0 then such association can be
detected with high power.
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Learning qp-graphs with the non-rejection rate

A sensible option to avoid choosing a single q value is to average
through different ones (Castelo and Roverato, 2009) with qpAvgNrr():

recall (% RegulonDB interactions)

pr
ec

is
io

n 
(%

)

0 1 2 3 4 5 6

0
10

20
30

40
50

60
70

80
90

10
0

0 33 66 98 131 164 197

p=4205 genes and n=43 experiments from NCBI GEO GDS680

recall (# RegulonDB interactions)

Average
q = 40
q = 35
q = 30
q = 25
q = 20
q = 15
q = 10
q = 5
q = 1
Random
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Learning qp-graphs from expression and genotype data

We have extended the previous framework to mixed continous
(expression) and discrete (genotype) data (Tur and Castelo, in
preparation).

The extension essentially consists of replacing the conditional
independence test for continuous data by a proper one for mixed data.

We have used mixed graphical model theory (Lauritzen, 1996; Edwards,
2000) to achieve that goal. Concretely, we will be using an
homogeneous mixed graphical model (i.e., genotypes can affect mean
expression levels but not their variance).

To use it, if the input data is a matrix, one should specify the discrete
variables with the argument I in calls to qpCItest(), qpNrr(), etc.;
with ExpressionSet and smlSet objects as input, the software
identifies automatically what features are discrete.
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Learning qp-graphs from expression and genotype data

Exploiting the fact that we perform a likelihood ratio test between a
saturated and a constrained model which are both decomposable, one
can use an exact test (Tur and Castelo, in preparation):
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Learning qp-graphs from expression and genotype data

Missing data occur frequently in genotype and clinical data. They are
handled by default using a complete-case analysis strategy.

In the forthcoming release, a maximum likelihood strategy based on the
EM algorithm will be available through an argument
use=c("complete.obs", "em"), similarly to the cov() base function.

In our preliminary experiments, the EM algorithm provides more
accurate estimates of the magnitude of the associations. However, the
non-rejection rate seems to work quite robustly using complete-case
analysis, which is much faster (Tur and Castelo, in preparation).
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Learning qp-graphs from expression and genotype data

Performance with simulated mixed data: (a,b) MCAR, (c,d) MAR, (a,c)
complete-case analysis, (b,d) EM algorithm (Tur and Castelo, in
preparation):
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Adjusting for batch and other confounding effects

Batch and other confounding effects may be implicitly (by conditioning
on expression) or explicitly (via the fix.Q argument) adjusted within the
calculations (Tur and Castelo, in preparation).
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Mapping eQTL associations

Inferring networks from eQTL data will be illustrated in this workshop
with the following data:
> load("qpgraphWorkshop/YeastGG.RData")
> ls(pattern="sacCer3")

[1] "BremGGsacCer3chr3n4" "sacCer3chrLen" "sacCer3genePos"
[4] "sacCer3markerPos"

The matrix BremGGsacCer3chr3n4 contains genotype and expression
data from 112 segregants of an experimental cross between a lab and a
wild strain of yeast (Brem et al., 2005).

This is a subset of the original data which contains expression profiles of
about all yeast genes (6,216), but genotypes for only chromosomes III
and IV (269 genetic markers).
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Mapping eQTL associations

Let’s explore the data a little bit:

> dim(BremGGsacCer3chr3n4)

[1] 112 6485

> BremGGsacCer3chr3n4[1:5, 265:275]

5913_at_x15 5914_at_x00 5916_at_x13 5917_at_x01 3357_at_x12 YDR407C
10_1_c 0 0 0 0 0 0.12011749
10_3_c 0 0 0 0 0 -0.07569854
10_4_d 1 1 1 1 1 -0.05744455
11_3_b 1 1 1 1 1 -0.14807044
9_6_d 0 0 0 0 0 0.12339946

YDR180W YAR050W YKL129C YOR328W YJR138W
10_1_c 0.13858799 -0.53439312 -0.17761065 -0.08306616 -0.2144190
10_3_c -0.11020247 0.09272298 0.08288762 0.27866605 -0.1625249
10_4_d -0.13596410 -0.57002534 -0.38653009 -0.31692702 -0.2855860
11_3_b -0.04119522 -0.72399742 -0.33699962 -0.36677387 -0.4166205
9_6_d -0.13085680 0.20014412 0.31184083 0.39644932 0.1210753

> sum(is.na(BremGGsacCer3chr3n4)) / (269*112)

[1] 0.02223845
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Mapping eQTL associations

Objects sacCer3markerPos and sacCer3genePos contain chromosomal
locations of the markers and genes, respectively, and sacCer3chrLen the
chromosome sequence lengths. All these physical genetic positions are
based on the yeast assembly sacCer3 at http://genome.ucsc.edu.
> head(sacCer3markerPos)

chromosome position
6960_at_x06 3 14066
6929_at_x07 3 43867
6929_at_x06 3 43879
6893_at_x00 3 54436
6900_at_x13 3 64311
6906_at_x06 3 75021

> head(sacCer3genePos)

chromosome position
YDR407C 4 1284069
YDR180W 4 821295
YAR050W 1 203403
YKL129C 11 196349
YOR328W 15 931803
YJR138W 10 684567

> sacCer3chrLen

chrI chrII chrIII chrIV chrV chrVI chrVII chrVIII chrIX chrX
230218 813184 316620 1531933 576874 270161 1090940 562643 439888 745751
chrXI chrXII chrXIII chrXIV chrXV chrXVI
666816 1078177 924431 784333 1091291 948066
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Mapping eQTL associations

Start by calculating all (un)conditional independence tests between
genetic markers and gene expression profiles with the function
qpAllCItests():
> allci <- qpAllCItests(BremGGsacCer3chr3n4, I=rownames(sacCer3markerPos),
+ pairup.i=rownames(sacCer3markerPos),
+ pairup.j=rownames(sacCer3genePos), verbose=FALSE)

This function returns by default only raw p-values of all performed tests,
but the statistics and actual sample sizes per test can be also obtained
with the argument return.type.
> allci$p.value[rownames(sacCer3markerPos)[1:5], rownames(sacCer3genePos)[1:5]]

5 x 5 Matrix of class "dgeMatrix"
YDR407C YDR180W YAR050W YKL129C YOR328W

6960_at_x06 0.21019083 0.9546130 0.36074057 0.7179408 0.09387935
6929_at_x07 0.09233164 0.4617914 0.42947716 0.9163275 0.31350710
6929_at_x06 0.09233164 0.4617914 0.42947716 0.9163275 0.31350710
6893_at_x00 0.60941611 0.2715069 0.97658206 0.8547696 0.40867417
6900_at_x13 0.35657822 0.4148094 0.04218579 0.1277865 0.03522584

> allci$statistic

[1] NA

> allci$n

[1] NA
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Mapping eQTL associations

Plot a map of the significant associations with qpPlotMap():
> par(mar=c(4, 5, 1, 1))
> sel.pairs <- qpPlotMap(allci$p.value, sacCer3markerPos, sacCer3genePos,
+ sacCer3chrLen, ylab="", cex=2, p.value=0.01)
> mtext("Ordered Genes", 2, line=4)
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Mapping eQTL associations

Function qpPlotMap() returns pairs of genetic marker and gene meeting
the adjusted p-value cutoff:
> dim(sel.pairs)

[1] 1985 4

> head(sel.pairs, n=2)

i j pval adjpval
1 6829_at_x01 YKL209C 1.024931e-54 1.698352e-48
2 6829_at_x02 YKL209C 4.819937e-54 7.986823e-48

Explore genetic hotspots:
> markerlinks <- sapply(split(sel.pairs[,3], sel.pairs[,1]), length)
> head(sacCer3markerPos[names(sort(markerlinks, decreasing=TRUE)), ], n=10)

chromosome position
6768_at_x05 3 175816
6768_at_x06 3 175810
2438_at_x03 3 177858
6768_at_x07 3 175807
6829_at_x01 3 201174
6829_at_x02 3 201175
6909_at_x10 3 92248
6909_at_x03 3 92014
2435_at_x00 3 90413
2435_at_x04 3 90677

Take three hotspot markers at most chromosomal upstream positions:
> markerhotspots <- c("6768_at_x07", "6829_at_x01", "2435_at_x00")
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Inferring eQTL networks

We will use the previously selected genetic interactions and transcription
factor annotations to restrict the network inference problem.

Load transcriptional regulatory interactions documented in yeast from
http://www.yeastract.com:
> yeastRegInt <- read.table("qpgraphWorkshop/yeastractRegTwoColTable.tsv",
+ colClasses="character")
> head(yeastRegInt, n=2)

V1 V2
1 Abf1 YKL112w
2 Abf1 YAL054c

Extract transcription factor gene identifiers and select those present in
our data. We need to load first the organism level package for yeast:
> library("org.Sc.sgd.db")
> tfIDs <- toupper(unique(yeastRegInt[, 1]))
> tfIDs <- unlist(mget(tfIDs, revmap(org.Sc.sgdGENENAME), ifnotfound=NA))
> tfIDs[is.na(tfIDs)] <- names(tfIDs)[is.na(tfIDs)]
> tfIDs <- tfIDs[tfIDs %in% rownames(sacCer3genePos)]
> tfIDs <- intersect(tfIDs, sel.pairs$j)
> length(tfIDs)

[1] 5
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Inferring eQTL networks

Estimate NRRs with q = 20 (ideally we would use something like
q = {25, 50, 75, 100} and average them using qpAvgNrr()):
> nrr <- qpNrr(BremGGsacCer3chr3n4, q=20, I=rownames(sacCer3markerPos),
+ pairup.i=c(markerhotspots, tfIDs), pairup.j=unique(sel.pairs$j),
+ restrict.Q=rownames(sacCer3genePos), verbose=FALSE)
> dim(nrr)

[1] 6485 6485

Subset the resulting matrix to the involved features to gain speed:
> nrr <- nrr[c(markerhotspots, tfIDs, unique(sel.pairs$j)),
+ c(markerhotspots, tfIDs, unique(sel.pairs$j))]
> dim(nrr)

[1] 129 129

Select the qp-graph with strongest associations (NRR=0). These are
marker-gene and gene-gene pairs which rejected every of the default
nTest = 100 conditional independence tests on randomly selected
conditioning subsets of q = 20 genes.
> g <- qpGraph(nrr, threshold=0, return.type="graphNEL")
> g

A graphNEL graph with undirected edges
Number of Nodes = 51
Number of Edges = 58
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Inferring eQTL networks

Plot the network and explore genetic interactions with 2435_at_x00:
> qpPlotNetwork(g, pairup.i=c(markerhotspots, tfIDs),
+ pairup.j=unique(sel.pairs$j), annotation="org.Sc.sgd.db")
> chr3hs <- qpTopPairs(refGraph=g, pairup.i="2435_at_x00", pairup.j=nodes(g),
+ annotation="org.Sc.sgd.db", n=Inf)
> chr3hs[, 3:4]

iSymbol jSymbol
1 2435_at_x00 BAP2
2 2435_at_x00 NFS1
3 2435_at_x00 LEU2
4 2435_at_x00 UBP9
5 2435_at_x00 LEU1
6 2435_at_x00 YGL010W
7 2435_at_x00 YGL138C
8 2435_at_x00 BAT1
9 2435_at_x00 ILV3
10 2435_at_x00 OAC1
11 2435_at_x00 LEU4
12 2435_at_x00 CTI6
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Inferring eQTL networks

Examine some of the interactions around hotspot 2435_at_x00. We
build a GRanges object with the positions of the hotspot and the
interacting genes and export it into a BED file.
> library(rtracklayer)
> chr <- c(paste0("chr", as.roman(sacCer3markerPos[unique(chr3hs$i), 1])),
+ paste0("chr", as.roman(sacCer3genePos[unique(chr3hs$j), 1])))
> rng <- IRanges(c(sacCer3markerPos[unique(chr3hs$i), 2],
+ sacCer3genePos[unique(chr3hs$j), 2]), width=1,
+ names=c(unique(chr3hs$iSymbol), unique(chr3hs$jSymbol)))
> gr <- GRangesForUCSCGenome("sacCer3", chr, rng, strand="+")
> head(gr)

GRanges with 6 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
2435_at_x00 chrIII [ 90413, 90413] +

BAP2 chrII [373861, 373861] +
NFS1 chrIII [ 92777, 92777] +
LEU2 chrIII [ 91324, 91324] +
UBP9 chrV [355466, 355466] +
LEU1 chrVII [476313, 476313] +

---
seqlengths:

chrI chrII chrIII chrIV chrIX ... chrXIV chrXV chrXVI chrM
230218 813184 316620 1531933 439888 ... 784333 1091291 948066 85779

> export(gr, "chr3hsint.bed")
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Inferring eQTL networks

The examination of the genomic context at the UCSC genome browser,
previously uploading the exported BED file, produces hits pointing to cis
and trans associations involved in the leucine biosynthesis pathway:
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Integrating phenotype information

The integration of phenotypic information into the network inference can
be done by using ExpressionSet and smlSet objects for the input data.

Let us consider again the E. coli data set stored as an ExpressionSet
object in eset100 and particularly its phenotypic information:
> head(pData(eset100)[, 1:3])

Strain GrowthProtocol GenotypeVariation
GSM18235 mutant aerobic appY
GSM18236 mutant aerobic appY
GSM18237 mutant aerobic appY
GSM18246 mutant aerobic arcA
GSM18247 mutant aerobic arcA
GSM18248 mutant aerobic arcA

Estimate again NRR values this time including the phenotypic variable
Strain and adjusting for GrowthProtocol:
> nrr.q5.st.gp <- qpNrr(eset100, q=5, pairup.i=c(TFgenes, "Strain"),
+ pairup.j=featureNames(eset100),
+ fix.Q="GrowthProtocol", verbose=FALSE)
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Integrating phenotype information

Calculate the precision-recall curve and select a network at a nominal
50% precision.
> nrr.q5.st.gp.pr <- qpPrecisionRecall(nrr.q5.st.gp, refGraph=regulon100[, 3:4],
+ pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ decreasing=FALSE)
> nrr.thr.q5.st.gp <- qpPRscoreThreshold(nrr.q5.st.gp.pr, level=0.5,
+ recall.level=FALSE, max.score=0)
> nrr.g.q5.st.gp <- qpGraph(nrr.q5.st.gp, threshold=nrr.thr.q5.st.gp,
+ return.type="graphNEL")
> nrr.g.q5.st.gp

A graphNEL graph with undirected edges
Number of Nodes = 57
Number of Edges = 59

Perform now a differential expression analysis using limma to search for
genes changing between the mutant and the wild strain adjusting for
the growth protocol:
> library(limma)
> design <- model.matrix(~ factor(Strain) + factor(GrowthProtocol), data=eset100)
> fit <- lmFit(eset100, design)
> fit <- eBayes(fit)
> deGenes <- topTable(fit, coef=2, p.value=0.1, n=Inf)$ID
> length(deGenes)

[1] 22
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Integrating phenotype information

Plot the resulting network highlighting the previously found differentially
expressed genes:
> qpPlotNetwork(nrr.g.q5.st.gp, pairup.i=c(TFgenes, "Strain"),
+ pairup.j=nodes(nrr.g.q5.st.gp),
+ highlight=deGenes, annotation="org.EcK12.eg.db")
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Functionality we have not seen

A meta-analysis approach to identify common interactions with the
function qpGenNrr() (Roverato and Castelo, 2012).

A model-based approach to the Selection of networks using partial
correlation estimation after dimension reduction with the NRR.

Performing calculations in parallel with MPI via snow/parallel and the
argument clusterSize.

Integrating genotype and phenotype information through smlSet
objects. It works essentially the same as when integrating phenotypic
information from ExpressionSet objects but the dimension of genotype
data poses computational challenges that qpgraph is not addressing yet.
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Concluding remarks

The qpgraph package implements a principled statistical methodology
for inferring networks from high-throughput genomics data.

This methodology is based on graphical model theory that leads to
powerful and exact tests of conditional independence for pure
continuous and mixed, continuous and discrete, data.

Although it is computationally demanding, the operations through the
interacting pairs are independent allowing for parallel execution with
MPI and nearly linear speed-ups.

It currently lacks the implementation of appropriate data structures for
a more efficient and easy use of the methods that the package provides.
Improvements in this direction should appear in the next releases.

In the twitter account @robertclab we will be posting when a release
update with a bugfix of qpgraph is available via biocLite().
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Session information

> toLatex(sessionInfo())

R version 2.15.0 (2012-03-30), x86_64-apple-darwin9.8.0

Locale: C/UTF-8/C/C/C/C

Base packages: base, datasets, grDevices, graphics, grid, methods,
stats, utils

Other packages: AnnotationDbi 1.19.28, Biobase 2.17.6,
BiocGenerics 0.3.0, DBI 0.2-5, GenomicRanges 1.9.39, IRanges 1.15.24,
RSQLite 0.11.1, Rgraphviz 1.35.2, graph 1.35.1, limma 3.13.13,
mvtnorm 0.9-9992, org.EcK12.eg.db 2.7.1, org.Sc.sgd.db 2.7.1,
qpgraph 1.13.30, rtracklayer 1.17.13

Loaded via a namespace (and not attached): BSgenome 1.25.3,
Biostrings 2.25.8, GGBase 3.19.6, Matrix 1.0-6, RCurl 1.91-1,
Rsamtools 1.9.24, XML 3.9-4, annotate 1.35.3, bitops 1.0-4.1,
genefilter 1.39.0, lattice 0.20-6, snpStats 1.7.3, splines 2.15.0,
stats4 2.15.0, survival 2.36-14, tools 2.15.0, xtable 1.7-0, zlibbioc 1.3.0
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