Inferring molecular regulatory networks with qpgraph

Robert Castelo (robert.castelo@upf.edu)

Universitat Pompeu Fabra Barcelona, Spain

BioC 2012 - Seattle, WA

Acknowledgments

Alberto Roverato, PhD Università di Bologna, Italy

Inma Tur, MSc Universitat Pompeu Fabra

Sonja Hänzelmann, MSc Hospital del Mar Medical Research Institute Barcelona, Spain

Bioconductor project

Funding Spanish MINECO grant TIN2011-22826

Increasing interest in biological networks

Maria Stella Carro¹*, Wei Keat Lim^{3,3}*⁴, Mariano Javier Alvarce^{3,4}, Robert J. Bollo⁵, Xudong Zhao¹, Evan Y. Snyder², Erik P. Sulman¹⁰, Sandrine L. Anne¹⁴, Fiona Deetsch⁵, Howard Colman¹¹, Anna Lasore Ken Aldape¹², Andrea Califano^{1,2,3,4} & Antonio lavarone^{1,5,7}

Robert Castelo (robert.castelo@upf.edu)

Inferring molecular regulatory networks with gpgraph

commentary, relevant to the emerging field of network biol

• Built from literature: natural extension of functional annotations on genes to functional annotations on interactions. (not covered here)

• Built from high-throughput experimental data: natural extension of univariate, or bivariate, exploratory analyses (e.g., density estimation, clustering) to multivariate models (analogous to principal components analysis -PCA-). This is the goal of the package *qpgraph* described in this workshop.

Inferring molecular regulatory networks from high-throughput genomics data

Rockman, MV. Reverse engineering the genotype-phenotype map with natural genetic variation. Nature, 456:738-744, 2008.

- Biological networks have been characterized in many different ways, demonstrating that they can follow higher-order organizational principles. Here we assume two simple properties of biological networks.
- **Sparseness**: the fraction of interactions present in a specific cellular state under study is much smaller than the total number of possible interactions.
- **High-dimension**: the number *p* of interacting entities (genes, proteins, SNPs, etc.) is very high and, in general, much larger than the number *n* of experimental samples available for estimating the network: the $p \gg n$ problem.

- Escherichia coli (E. coli) is the free-living organism for which a largest part of its transcriptional regulatory network is supported by some sort of experimental evidence.
- The database RegulonDB (Gama-Castro *et al.*, 2011) provides a curated set of transcription factor and target gene relationships that can be used as gold-standard for comparing different network inference approaches.
- We are going to use a microarray data set from Covert *et al.* (2004) with n=43 samples monitoring the response from E. coli during an oxygen shift.
- The experimental setup aimed at targeting the *a priori* most relevant part of the underlying regulatory network by using six strains with knockouts of key transcriptional regulators in the oxygen response: $\Delta appY$, Δfnr , $\Delta oxyR$, $\Delta soxS$ and the double knockout $\Delta arcA\Delta fnr$.

• Load the following packages:

- > library(Biobase)
- > library(Rgraphviz)
- > library(qpgraph)
- > library(org.EcK12.eg.db)

• Load and explore the E. coli data contained in the package:

```
> data(EcoliOxygen)
> 1s()
[1] "filtered.regulon6.1" "gds680.eset"
[3] "subset.filtered.regulon6.1" "subset.gds680.eset"
> gds680.eset
ExpressionSet (storageMode: lockedEnvironment)
assayData: 4205 features, 43 samples
  element names: exprs
protocolData: none
phenoData
  rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
  varLabels: Strain GrowthProtocol GenotypeVariation Description
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
  pubMedIds: 15129285
Annotation: org.EcK12.eg.db
```

• We are going to focus on the subnetwork formed by the KO TFs and their target genes, as defined by RegulonDB:

> subset.gds680.eset

```
ExpressionSet (storageMode: lockedEnvironment)
assayData: 378 features, 43 samples
element names: exprs
protocolData: none
phenoData
  rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
  varLabels: Strain GrowthProtocol GenotypeVariation Description
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
  pubMedIds: 15129285
Annotation: org.EcK12.eg.db
> dim(subset.filtered.regulon6.1)
[1] 681 5
```

• Select the top 100 genes with largest variability through these expression data:

```
> IQRs <- esApplv(subset.gds680.eset, 1, IQR)</pre>
> top100IQRgenes <- names(sort(IQRs, decreasing=TRUE))[1:100]</pre>
> eset100 <- subset.gds680.eset[top100IQRgenes. ]</pre>
> eset100
ExpressionSet (storageMode: lockedEnvironment)
assayData: 100 features, 43 samples
  element names: exprs
protocolData: none
phenoData
  rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
  varLabels: Strain GrowthProtocol GenotypeVariation Description
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
  pubMedIds: 15129285
Annotation: org.EcK12.eg.db
```

• Build the corresponding subset of the RegulonDB gold-standard:

```
> maskTF <- subset.filtered.regulon6.1$EgID_TF %in% top100IQRgenes
> maskTG <- subset.filtered.regulon6.1$EgID_TG %in% top100IQRgenes
> regulon100 <- subset.filtered.regulon6.1[maskTF & maskTG, ]
> dim(regulon100)
```

```
[1] 128 5
```

• Estimate Pearson correlation coefficients (PCCs) between the all pairs of genes:

 Using a high cutoff value on the absolute PCCs we can easily obtain a network of strongly correlated gene pairs using the *qpgraph* function *qpAnyGraph()*:

```
> pcc.g <- qpAnyGraph(abs(pcc.est), threshold=0.75, return.type="graphNEL")
> pcc.g
A graphNEL graph with undirected edges
Number of Nodes = 95
Number of Edges = 2043
```

• Plot the network with *Rgraphviz* and the *qpgraph* function qpPlotNetwork():

```
> qpPlotNetwork(pcc.g, annotation="org.EcK12.eg.db")
```

Network built from all pairs of genes (i, j) such that their absolute PCCs $|\rho_{ij}| > 0.75$.

 A straightforward approach to remove non-interesting (because, e.g., we cannot interpret them), and possibly spuriously, correlated pairs of genes, is to discard edges where no TF is involved:

```
> TGgenes <- setdiff(featureNames(eset100), regulon100[, "EgID_TF"])
> allTGpairs <- as.matrix(expand.grid(list(TGgenes, TGgenes)))
> pcc.est[allTGpairs] <- NA</pre>
```

 Select the network using the same minimum cutoff value and plot it again:

```
> pcc.g <- qpAnyGraph(abs(pcc.est), threshold=0.75, return.type="graphNEL")
> pcc.g
A graphNEL graph with undirected edges
Number of Nodes = 74
Number of Edges = 71
> qpPlotNetwork(pcc.g, annotation="org.EcK12.eg.db")
```

• The *qpgraph* function <u>qpPCC()</u> calculates all pairwise PCCs and their *p*-values and returns them in a list with two *dspMatrix* objects that only store the upper triangle of these two matrices.

Network built from pairs of genes (i, j) with at least one TF such that their absolute PCCs $|\rho_{ij}| > 0.75$.

• Let's consider now building a network out of connecting genes by pure chance. This can be accomplished by simply generating pairwise correlations uniformly at random, as follows:

 Analogously to what we did before, we discard edges where no TF is involved, select a network with the same minimum cutoff and plot it:
 rnd.est[allTGpairs] <- NA
 rnd.g <- qpAnyGraph(abs(rnd.est), threshold=0.75, return.type="graphNEL")
 rnd.g
 A graphNEL graph with undirected edges
 Number of Nodes = 29
 Number of Edges = 28
 > qpPlotNetwork(rnd.g, annotation="org.EcK12.eg.db")

Network built from pairs of genes (i, j) with at least one TF such that *uniformly random* correlations $|\rho_{ij}| > 0.75$.

- Since we are analyzing E. coli data, we can use the RegulonDB gold-standard to assess the accuracy of each network inference method by means of precision-recall curves.
- For this purpose, the *qpgraph* package provides the function *qpPrecisionRecall()*:

```
> pcc.pr <- qpPrecisionRecall(abs(pcc.est), refGraph=regulon100[, 3:4])
> rnd.pr <- qpPrecisionRecall(abs(rnd.est), refGraph=regulon100[, 3:4])</pre>
```

• We can plot the resulting curves as follows:

```
> abline(h=nrow(regulon100) / totalPossibleEdges, lwd=2, lty=3)
```

where the last call to abline() draws a dotted line at the baseline performance obtained by predicting all possible edges as present.

 Assessment of performance with precision-recall curves: predicting edges uniformly at random works in this case better than using PCCs.

- Assume that gene expression profiles form an independent and identically distributed (iid) *multivariate normal (Gaussian)* sample.
- Let $X_V = \{X_1, \dots, X_p\}$ be a vector of continuous random variables representing genes such that

$$X_V \sim P(X_V) \equiv \mathcal{N}(\mu, \Sigma)$$
.

where

- μ is the *p*-dimensional mean vector parameter;
- $\Sigma = {\sigma_{ij}}_{p \times p}$ is the covariance matrix;
- $\Sigma^{-1} = K = {\kappa_{ij}}_{p \times p}$ is the concentration, also known as precision, matrix.
- Pearson and partial correlations can be calculated by scaling the covariance and concentration matrix, respectively, as follows:

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \quad \rho_{ij.R} = \frac{-\kappa_{ij}}{\sqrt{\kappa_{ii}\kappa_{jj}}}, R = V \setminus \{i, j\}.$$

 Consider genes X, Y, Z where X, Y are transcription factors, X regulates Y and Y regulates Z, creating an indirect effect of X on Z:

```
> set.seed(123)
> X <- rnorm(100)
> Y <- X * 2 + rnorm(100)
> Z <- Y * 2 + rnorm(100)</pre>
```


• Plot the expression of X against Z and notice the high marginal (Pearson) correlation:

• However, X and Z are only *marginally* dependent and, in fact, they are *conditionally independent given* Y.

 Partial correlations allow one to estimate the association between two variables adjusting for the remaining ones:

```
> -cov2cor(solve(cov(cbind(X,Y,Z))))
X Y Z
```

X -1.0000000 0.4551541 -0.08337355 Y 0.45515415 -1.0000000 0.90090474 Z -0.08337355 0.9009047 -1.0000000

 They can be interpreted using a so-called partial regression plot:

```
> fitX <- lm(X ~ Y)
> fitZ <- lm(Z ~ Y)
> plot(resid(fitX), resid(fitZ),
+ xlab="Residuals X ~ Y",
+ ylab="Residuals Z ~ Y")
> cor.test(resid(fitX), resid(fitZ))
```

Pearson's product-moment correlation

Residuals X ~ Y

• Let G = (V, E) be an undirected graph with $V = \{1, ..., p\}$, a Gaussian graphical model can be described as follows:

• A probability distribution $P(X_V)$ is undirected Markov w.r.t. G if

$$(i,j) \notin E \Rightarrow \kappa_{ij} = 0 \Leftrightarrow X_i \bot X_j | X_V \setminus \{X_i, X_j\}$$

- These models are also known as covariance selection models (Dempster, 1972) or concentration graph models (Cox and Wermuth, 1996).
- Two vertices i and j are separated in G by a subset S ⊂ V \{i, j} iff every path between i and j intersects S, denoted hereafter by i⊥_G j|S.
- Global Markov property (Hammersley and Clifford, 1971):

$$i \perp_G j | S \Rightarrow X_i \bot X_j | X_S$$
.

• Let's verify this by simulating a covariance matrix with the *qpgraph* function qpG2Sigma():

```
> G <- matrix(c(0,1,0,0,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0),</pre>
            nrow=5. dimnames=list(1:5, 1:5))
> G
  12345
101000
210110
301001
401001
500110
> set.seed(123)
> Sigma <- qpG2Sigma(G, rho=0.5)</pre>
> round(solve(Sigma), digits=2)
           2 3 4
     1
                           5
1 0.79 -0.56 0.00 0.00 0.00
2 -0.56 5.35 -2.77 -0.85 0.00
3 0.00 -2.77 2.65 0.00 -0.35
4 0.00 -0.85 0.00 1.38 -0.60
5 0.00 0.00 -0.35 -0.60 2.50
```

Note that the mean marginal (Pearson) correlation between variables connected in G also approaches the nominal value rho=0.5:
 > mean(cov2cor(as.matrix(Sigma))[upper.tri(as.matrix(Sigma)) & G])
[1] 0.5604867

 Sample lots of observations (n ≫ p) from this multivariate Gaussian distribution and try to infer the present and missing edges from the graph by estimating the pattern of zeroes in the concentration matrix:

[1] 0.5598355

• Now with fewer observations but still with n > p: 5 > set.seed(123) > X <- rmvnorm(n=50, sigma=as.matrix(Sigma))</pre> > dim(X)[1] 50 5 $> S \leq -cov(X)$ > round(solve(S), digits=2) [,1] [,2] [,3] [,4] [,5] [1,] 0.95 -0.59 -0.12 0.02 0.28 [2,] -0.59 5.85 -2.68 -0.76 0.28 [3,] -0.12 -2.68 2.58 -0.09 -0.42 [4,] 0.02 -0.76 -0.09 1.72 -1.16 [5,] 0.28 0.28 -0.42 -1.16 3.15

• Perform a hypothesis test $H_0: \rho_{ii,R} = 0$ using the qpCItest() function: > qpCItest(X, i=1, j=5, Q=2:4, long.dim.are.variables=FALSE) Conditional independence test for continuous data using a t test for zero partial regression coefficient

data: 1 and 5 given {2, 3, 4} t = -1.0837, df = 45, p-value = 0.2843 alternative hypothesis: true partial regresion coefficient is not equal to 0 sample estimates: beta

```
-0.2903989
> coef(lm(X[,1] ~ X[,2]+X[,3]+X[,4]+X[,5]))
(Intercept) X[, 2] X[, 3] X[, 4] X[, 5]
0.03864379 0.61982129 0.12406899 -0.01774059 -0.29039886
```

• Sample fewer observations than random variables:

```
> set.seed(123)
> X <- rmvnorm(n=4, sigma=as.matrix(Sigma))
> dim(X)
[1] 4 5
> S <- cov(X)
> round(solve(S), digits=2)
Error in solve.default(S) :
   system is computationally singular: reciprocal condition number = 2.12472e-18
> qr(S)$rank
[1] 3
```

- Conditions for the existence of the maximum likelihood estimate (MLE) of K ≡ Σ⁻¹:
 - to estimate $\hat{K} = S^{-1}$, the sample covariance matrix S must have full rank. This only happens if and only if n > p (Dykstra, 1970).

non-decomposable graph decomposable graph

• The function qpPAC() enables this later approach:

- Main types of approaches to the problem of estimating a Gaussian graphical model from data with $p \gg n$:
 - Bayesian approaches with sparsity inducing priors (e.g., Dobra *et al.*, *J. Mult. Anal.*, 2004).
 - shrinkage estimate of the covariance matrix (e.g., Schäfer and Strimmer, *Stat. Appl. Genet. Mol. Biol.*, 2005).
 - dimension reduction (e.g., Segal *et al.*, *J. Mach. Learn. Res.*, 2005).
 - limited-order partial correlations (e.g., Castelo and Roverato *et al.*, *J. Mach. Learn. Res.*, 2006).
 - lasso estimate of the inverse covariance matrix (e.g., Friedman *et al.*, *Biostatistics*, 2008).

q-order partial correlation graphs – qp-graphs

• Instead of using *full*-order partial correlations, we can employ *limited*-order partial correlations by using subsets

$$Q \subseteq R = V \setminus \{i, j\}, \quad |Q| = q, \quad q < (n-2).$$

 Limited-order partial correlations allow us to test H₀: ρ_{ij.Q} = 0 with standard techniques, such that

$$\rho_{ij.Q} = 0 \Longleftrightarrow X_i \bot X_j | X_Q.$$

- The rationale behind is that if the underlying network G is sufficiently sparse, we can expect to identify many missing edges with $\rho_{ij,Q}$, i.e., accepting many tests $H_0: \rho_{ij,Q} = 0$.
- From another perspective, we will work using marginal distributions of size (q + 2) < n.

q-order partial correlation graphs - qp-graphs

• Definition of a *q*-order partial correlation graph, or qp-graph for short (Castelo and Roverato, 2006):

> Underlying *G* representrelations

qp-graph $G^{(q)}$ repreing full-order partial cor- senting *q*-order partial correlations

20

G associated to $P(X_V)$

 $G^{(q)}$ associated to all marginal distributions $P_Q(X_V)$ of size (q+2).

q-order partial correlation graphs – qp-graphs

• qp-graphs are an approximation to the underlying graph G:

- Assuming faithfulness of $P(X_V)$ to G (Castelo and Roverato, 2006):
 - If $r \leq q$ then $G^{(r)}$ will be always larger than $G^{(q)}$, it will have more edges.
 - $G^{(q)}$ is always going to be larger than G.
 - $P(X_V)$ is Markov w.r.t. $G^{(q)}$.

- The *qpgraph* package implements a statistical procedure to learn qp-graphs using the so-called **non-rejection rate**, or NRR for short.
- The NRR is a measure of linear association between two variables (i, j) over all marginal distributions of size (q + 2) defined by all subsets Q_{ij} = {Q_k : Q_k ⊆ V\{i, j}, |Q_k| = q} with |Q_{ij}| = (^{p-2}_q) = m.
- Let T_{ij}^q be a binary random variable taking values $t_{ij}^{Q_1}, \ldots, t_{ij}^{Q_m}$ as follows. For every subset $Q \in Q_{ij}$ of size q, test $H_0 : \rho_{ij,Q} = 0$ (i.e., $H_0 : X_i \perp \!\!\!\perp X_j | X_Q$) and, using a significance level α , decide:
 - (i) if H_0 is rejected then T_{ii}^q takes value 0;
 - (ii) if H_0 is accepted then \mathring{T}_{ij}^q takes value 1.
- The sample NRR equals the arithmetic mean value of non-rejections:

$$\operatorname{NRR}(i,j|q) := rac{1}{m} \sum_{k=1}^m t_{ij}^{Q_k}$$

 Since *m* can be very large, the estimation of the sample NRR is performed with a Monte Carlo method by sampling a limited number of subsets *Q* ∈ *Q_{ij}*, e.g., 100, uniformly at random.

• NRR values can be estimated with the function qpNrr(). Let's come back to the E. coli motivating example:

```
> nrr.q5 <- qpNrr(eset100, q=5, pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ verbose=FALSE)
> nrr.q5 <- reference of the pairup in TTP-reference of the pairup information (control)</pre>
```

```
> nrr.q15 <- qpNrr(eset100, q=15, pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ verbose=FALSE)
```

• As n - q grows large, NRR values converge to 0 for $(i, j) \in G$. However, all NRR values increase as q approaches n - 2.

```
> mask <- matrix(FALSE, nrow=100, ncol=100, dimnames=dimnames(nrr.q15))</pre>
```

```
> mask[as.matrix(regulon100[, 3:4])] <- TRUE</pre>
```

```
> par(mfrow=c(1, 2))
```

> boxplot(list(Present=as.matrix(nrr.q5)[mask], Absent=as.matrix(nrr.q5)[!mask]),

```
+ main="q=5", col="grey", ylab="NRR")
```

```
> boxplot(list(Present=as.matrix(nrr.q15)[mask], Absent=as.matrix(nrr.q15)[!mask]),
```

```
main="q=15", col="grey", ylab="NRR")
```

q=5

q=15

• Assess performance again with precision-recall curves:

> nrr.q5.pr <- qpPrecisionRecall(nrr.q5, refGraph=regulon100[, 3:4], decreasing=FALSE)
> nrr.q15.pr <- qpPrecisionRecall(nrr.q15, refGraph=regulon100[, 3:4], decreasing=FALSE)
> par(mfrow=c(1, 1))

- > plot(pcc.pr, type="b", lwd=2, pch=25, xlab="Recall", ylab="Precision", bg="black")
- > lines(rnd.pr, type="1", lwd=2, lty=2, bg="black")
- > lines(nrr.q5.pr, type="b", lwd=2, pch=24, bg="black")
- > lines(nrr.q15.pr, type="b", lwd=2, pch=23, bg="black")
- > legend("topright", c("PCC", "Random", "NRR q=5", "NRR q=15"), lwd=2,
- + pch=c(25, -1, 24, 23), lty=c(1, 2, 1), pt.bg="black", inset=0.01)

• Select a network at certain precision level and explore its contents:

```
> nrr.thr.q5 <- qpPRscoreThreshold(nrr.q5.pr, level=0.5, recall.level=FALSE, max.score=0)
> nrr.g.q5 <- qpGraph(nrr.q5, threshold=nrr.thr.q5, return.type="graphNEL")</pre>
> nrr.g.q5
```

```
A graphNEL graph with undirected edges
Number of Nodes = 57
Number of Edges = 63
> qpTopPairs(nrr.q5[nodes(nrr.g.q5), nodes(nrr.g.q5)],
             nrr.g.q5, annotation="org.EcK12.eg.db",
             n=10)
               j iSymbol jSymbol
        i
                                         x
   945908 947068
                    fnr
                            vfiD 0.0000000
                                                                        flu
                                                                                  hyaD
   944981 947376
                   betT
                            betB 0.0000000
2
3 945585 948797
                           appY 0.00000000
                   appC
                           appY 0.0000000
4 946540 948797
                   flu
5 947547 948797
                   appB
                           appY 0.00000000
6 948336 948874
                   fadB
                           arcA 0.00000000
                                                                            sufC
7 948857 948874
                   glcB
                           arcA 0.03157895
                                                               arcA
8 945572 948797
                   hvaF
                           appY 0.06593407
9 945908 946540
                    fnr
                           flu 0.12500000
10 945908 947390
                    fnr
                            gcvT 0.15053763
```

> qpPlotNetwork(nrr.g.q5, annotation="org.EcK12.eg.db"

• Formally, T_{ij}^q is a Bernoulli random variable and the NRR can be defined as its expectancy:

$$\operatorname{NRR}(i,j|q) := \operatorname{E}[T_{ij}^q] = \operatorname{Pr}(T_{ij}^q = 1).$$

• This theoretical value can be described as follows, let

$$\Pr(\mathcal{T}_{ij}^q = 1 | Q) = \begin{cases} (1 - \alpha) & \text{if } Q \text{ separates } i \text{ and } j \text{ in } G; \\ \beta_{ij,Q} & \text{otherwise;} \end{cases}$$

where α and $\beta_{ij,Q}$ are the probability of the first and second type error of the test, respectively.

• Let Q_{ij} be the collection of all possible subsets Q of size q, then by the law of total probability,

$$\Pr(\mathcal{T}_{ij}^{\boldsymbol{q}}=1) = \sum_{\boldsymbol{Q}\in\mathcal{Q}_{ij}} \Pr(\mathcal{T}_{ij}^{\boldsymbol{q}}=1|\boldsymbol{Q}) \Pr(\boldsymbol{Q})\,,$$

• Assuming that if $|Q_{ij}| = m$ then $\Pr(Q) = 1/m$, it can be shown that:

$$\Pr(T_{ij}^{q}=1) = \beta_{ij}^{q}(1-\pi_{ij}^{q}) + (1-\alpha)\pi_{ij}^{q},$$

where β_{ij}^{q} is the mean value of all the Type-II errors $\beta_{ij,Q}$ and π_{ij}^{q} is the fraction of subsets Q that separate i and j in G.

• The values β_{ij}^q and π_{ij} are *unkown* but it can be shown that $\beta_{ij}^q \leq (1 - \alpha)$ implies that the NRR is an upper bound to both values:

$$\mathrm{NRR}(i,j|m{q}) := eta_{ij}^{m{q}} \leq \mathrm{NRR}(i,j|m{q}) \quad ext{and} \quad \pi_{ij} \leq rac{\mathrm{NRR}(i,j|m{q})}{1-lpha}$$

- Hence, a value of the non-rejection rate for a pair of genes that is close to zero implies both
 - (i) the probability that a subset of *q* genes separates the genes in the network is close to zero.
 - (ii) for those sets $Q \in Q_{ij}$ with $\rho_{ij,Q} \neq 0$ then such association can be detected with high power.

• A sensible option to avoid choosing a single q value is to average through different ones (Castelo and Roverato, 2009) with qpAvgNrr():

p=4205 genes and n=43 experiments from NCBI GEO GDS680

recall (% RegulonDB interactions)

- We have extended the previous framework to mixed continous (expression) and discrete (genotype) data (Tur and Castelo, *in preparation*).
- The extension essentially consists of replacing the conditional independence test for continuous data by a proper one for mixed data.
- We have used mixed graphical model theory (Lauritzen, 1996; Edwards, 2000) to achieve that goal. Concretely, we will be using an *homogeneous* mixed graphical model (i.e., genotypes can affect mean expression levels but not their variance).
- To use it, if the input data is a matrix, one should specify the discrete variables with the argument I in calls to qpCItest(), qpNrr(), etc.; with ExpressionSet and smlSet objects as input, the software identifies automatically what features are discrete.

• Exploiting the fact that we perform a likelihood ratio test between a saturated and a constrained model which are both *decomposable*, one can use an exact test (Tur and Castelo, *in preparation*):

• Missing data occur frequently in genotype and clinical data. They are handled by default using a *complete-case analysis* strategy.

• In the forthcoming release, a maximum likelihood strategy based on the EM algorithm will be available through an argument use=c("complete.obs", "em"), similarly to the cov() base function.

• In our preliminary experiments, the EM algorithm provides more accurate estimates of the magnitude of the associations. However, the non-rejection rate seems to work quite robustly using complete-case analysis, which is much faster (Tur and Castelo, *in preparation*).

 Performance with simulated mixed data: (a,b) MCAR, (c,d) MAR, (a,c) complete-case analysis, (b,d) EM algorithm (Tur and Castelo, in preparation):

Robert Castelo (robert.castelo@upf.edu)

Inferring molecular regulatory networks with qpgraph

Adjusting for batch and other confounding effects

• Batch and other confounding effects may be implicitly (by conditioning on expression) or explicitly (via the fix.Q argument) adjusted within the calculations (Tur and Castelo, *in preparation*).

• Inferring networks from eQTL data will be illustrated in this workshop with the following data:

```
> load("qpgraphWorkshop/YeastGG.RData")
> ls(pattern="sacCer3")
[1] "BremGGsacCer3chr3n4" "sacCer3chrLen" "sacCer3genePos"
[4] "sacCer3markerPos"
```

- The matrix BremGGsacCer3chr3n4 contains genotype and expression data from 112 segregants of an experimental cross between a lab and a wild strain of yeast (Brem *et al.*, 2005).
- This is a subset of the original data which contains expression profiles of about all yeast genes (6,216), but genotypes for only chromosomes III and IV (269 genetic markers).

• Let's explore the data a little bit:

```
> dim(BremGGsacCer3chr3n4)
```

[1] 112 6485

> BremGGsacCer3chr3n4[1:5, 265:275]

5913 at x15 5914 at x00 5916 at x13 5917 at x01 3357 at x12 YDR407C 10_1_c 0 0.12011749 10_3_c 0 - 0.0756985410 4 d 1 -0.05744455 1 11_3_b 1 1 - 0.1480704496 d 0 0.12339946 YDR180W YAR050W YKI.129C YOR328W Y.IR138W 10_1_c 0.13858799 -0.53439312 -0.17761065 -0.08306616 -0.2144190 10 3 c -0.11020247 0.09272298 0.08288762 0.27866605 -0.1625249 10 4 d -0.13596410 -0.57002534 -0.38653009 -0.31692702 -0.2855860 11_3_b -0.04119522 -0.72399742 -0.33699962 -0.36677387 -0.4166205 9 6 d -0.13085680 0.20014412 0.31184083 0.39644932 0.1210753 > sum(is.na(BremGGsacCer3chr3n4)) / (269*112)

[1] 0.02223845

• Objects sacCer3markerPos and sacCer3genePos contain chromosomal locations of the markers and genes, respectively, and sacCer3chrLen the chromosome sequence lengths. All these physical genetic positions are based on the yeast assembly *sacCer3* at http://genome.ucsc.edu.

> head(sacCer3markerPos)

	chromosome	position
6960_at_x06	3	14066
6929_at_x07	3	43867
6929_at_x06	3	43879
6893_at_x00	3	54436
6900_at_x13	3	64311
6906_at_x06	3	75021

> head(sacCer3genePos)

chromosome position

YDR407C	4	1284069
YDR180W	4	821295
YAR050W	1	203403
YKL129C	11	196349
YOR328W	15	931803
YJR138W	10	684567

> sacCer3chrLen

chrI	chrII	chrIII	chrIV	chrV	chrVI	chrVII	chrVIII	chrIX	chrX
230218	813184	316620	1531933	576874	270161	1090940	562643	439888	745751
chrXI	chrXII	chrXIII	chrXIV	chrXV	chrXVI				
666816	1078177	924431	784333	1091291	948066				

• Start by calculating all (un)conditional independence tests between genetic markers and gene expression profiles with the function qpAllCItests():

```
> allci <- qpAllCItests(BremGGsacCer3chr3n4, I=rownames(sacCer3markerPos),
+ pairup.i=rownames(sacCer3markerPos),
+ pairup.j=rownames(sacCer3genePos), verbose=FALSE)</pre>
```

• This function returns by default only raw *p*-values of all performed tests, but the statistics and actual sample sizes per test can be also obtained with the argument return.type.

> allci\$statistic

[1] NA

> allci\$n

[1] NA

• Plot a map of the significant associations with qpPlotMap():

Ordered Markers

• Function qpPlotMap() returns pairs of genetic marker and gene meeting the adjusted *p*-value cutoff:

• Explore genetic hotspots:

```
> markerlinks <- sapply(split(sel.pairs[,3], sel.pairs[,1]), length)</pre>
```

> head(sacCer3markerPos[names(sort(markerlinks, decreasing=TRUE)),], n=10)

	chromosome	position
6768_at_x05	3	175816
6768_at_x06	3	175810
2438_at_x03	3	177858
6768_at_x07	3	175807
6829_at_x01	3	201174
6829_at_x02	3	201175
6909_at_x10	3	92248
6909_at_x03	3	92014
2435_at_x00	3	90413
2435_at_x04	3	90677

• Take three hotspot markers at most chromosomal upstream positions:

> markerhotspots <- c("6768_at_x07", "6829_at_x01", "2435_at_x00")</pre>

- We will use the previously selected genetic interactions and transcription factor annotations to restrict the network inference problem.
- Load transcriptional regulatory interactions documented in yeast from http://www.yeastract.com:

```
> yeastRegInt <- read.table("qpgraphWorkshop/yeastractRegTwoColTable.tsv",
+ colClasses="character")
> head(yeastRegInt, n=2)
V1 V2
1 Abf1 YKL112w
2 Abf1 YAL054c
```

• Extract transcription factor gene identifiers and select those present in our data. We need to load first the organism level package for yeast:

```
> library("org.Sc.sgd.db")
> tfIDs <- toupper(unique(yeastRegInt[, 1]))
> tfIDs <- unlist(mget(tfIDs, revmap(org.Sc.sgdGENENAME), ifnotfound=NA))
> tfIDs[is.na(tfIDs)] <- names(tfIDs)[is.na(tfIDs)]
> tfIDs <- tfIDs[tfIDs %in% rownames(sacCer3genePos)]
> tfIDs <- intersect(tfIDs, sel.pairs$j)
> length(tfIDs)
[1] 5
```

- Estimate NRRs with q = 20 (ideally we would use something like q = {25,50,75,100} and average them using qpAvgNrr()): > nrr <- qpNrr(BremGGsacCer3chr3n4, q=20, I=rownames(sacCer3markerPos), + pairup.i=c(markerhotspots, tfIDs), pairup.j=unique(sel.pairs\$j), + restrict.Q=rownames(sacCer3genePos), verbose=FALSE) > dim(nrr) [1] 6485 6485
- Subset the resulting matrix to the involved features to gain speed:

```
> nrr <- nrr[c(markerhotspots, tfIDs, unique(sel.pairs$j)),
+ c(markerhotspots, tfIDs, unique(sel.pairs$j))]
> dim(nrr)
```

```
[1] 129 129
```

 Select the qp-graph with strongest associations (NRR=0). These are marker-gene and gene-gene pairs which rejected every of the default *nTest* = 100 conditional independence tests on randomly selected conditioning subsets of q = 20 genes.

```
> g <- qpGraph(nrr, threshold=0, return.type="graphNEL")
> g
A graphNEL graph with undirected edges
Number of Nodes = 51
Number of Edges = 58
```

Plot the network and explore genetic interactions with 2435_at_x00:

```
> qpPlotNetwork(g, pairup.i=c(markerhotspots, tfIDs),
                 pairup.j=unique(sel.pairs$j), annotation="org.Sc.sgd.db")
> chr3hs <- qpTopPairs(refGraph=g, pairup.i="2435_at_x00", pairup.j=nodes(g),</pre>
                        annotation="org.Sc.sgd.db", n=Inf)
 chr3hs[, 3:4]
>
                                                                   APT2
       iSymbol jSymbol
   2435 at x00
                   BAP2
                                                                  YHP'
1
   2435 at x00
                  NFS1
2
                                                 GDH1 R225W
                                                                          YDL012C
3 2435_at_x00
                  LEU2
  2435 at x00
                  UBP9
4
                                        (YCL065W)
                                                                   MRH1 X RPN4
5
   2435_at_x00
                   LEU1
                                    (HMLALPHA1)
6
  2435_at_x00 YGL010W
                                 HMLALPHA2
                                                                            PDC6
                                                       FIIA AC
7
  2435_at_x00 YGL138C
8 2435_at_x00
                   BAT1
                                 MATALPHA2
                   ILV3
9 2435 at x00
                                MATALPHA
10 2435 at x00
                   DAC1
                                 HMRA1 29_at YCR0974
11 2435_at_x00
                   LEU4
12 2435 at x00
                   CTI6
                                  BST1
                                   AGA2
                                                      YKL177W STE3
                                    VID28
                                       SAG1
```

STB!

MFAL GYPYJL150V

I AG2

• Examine some of the interactions around hotspot 2435_at_x00. We build a *GRanges* object with the positions of the hotspot and the interacting genes and export it into a BED file.

```
> library(rtracklayer)
> chr <- c(paste0("chr", as.roman(sacCer3markerPos[unique(chr3hs$i), 1])),
+ paste0("chr", as.roman(sacCer3genePos[unique(chr3hs$i), 1])),
> rng <- IRanges(c(sacCer3markerPos[unique(chr3hs$i), 2],
+ sacCer3genePos[unique(chr3hs$j), 2]), width=1,
+ names=c(unique(chr3hs$iSymbol), unique(chr3hs$jSymbol)))
> gr <- GRangesForUCSCGenome("sacCer3", chr, rng, strand="+")
> head(gr)
```

GRanges with 6 ranges and 0 elementMetadata cols:

	seqnames		ranges	strand			
	<rle></rle>	<	[Ranges>	<rle></rle>			
2435_at_x00	chrIII	[90413,	90413]	+			
BAP2	chrII	[373861,	373861]	+			
NFS1	chrIII	[92777,	92777]	+			
LEU2	chrIII	[91324,	91324]	+			
UBP9	chrV	[355466,	355466]	+			
LEU1	chrVII	[476313,	476313]	+			
seqlengths:							
chrI	chrII chi	III chi	rIV chi	IX	chrXIV	chrXV	chrXVI
230218 83	13184 316	620 15319	933 4398	388	784333	1091291	948066

```
> export(gr, "chr3hsint.bed")
```

chrM

85779

• The examination of the genomic context at the UCSC genome browser, previously uploading the exported BED file, produces hits pointing to *cis* and *trans* associations involved in the leucine biosynthesis pathway:

Chin et al.,

PLos Biol, 2008, Fig. 1

Integrating phenotype information

- The integration of phenotypic information into the network inference can be done by using *ExpressionSet* and *smlSet* objects for the input data.
- Let us consider again the E. coli data set stored as an *ExpressionSet* object in eset100 and particularly its phenotypic information:

```
> head(pData(eset100)[, 1:3])
```

	Strain	GrowthProtocol	GenotypeVariation
GSM18235	mutant	aerobic	appY
GSM18236	mutant	aerobic	appY
GSM18237	mutant	aerobic	appY
GSM18246	mutant	aerobic	arcA
GSM18247	mutant	aerobic	arcA
GSM18248	mutant	aerobic	arcA

• Estimate again NRR values this time including the phenotypic variable Strain and adjusting for GrowthProtocol:

```
> nrr.q5.st.gp <- qpNrr(eset100, q=5, pairup.i=c(TFgenes, "Strain"),
+ pairup.j=featureNames(eset100),
+ fix.Q="GrowthProtocol", verbose=FALSE)
```

Integrating phenotype information

• Calculate the precision-recall curve and select a network at a nominal 50% precision.

```
> nrr.q5.st.gp.pr <- qpPrecisionRecall(nrr.q5.st.gp, refGraph=regulon100[, 3:4],
+ pairup.i=TFgenes, pairup.j=featureNames(eset100),
+ decreasing=FALSE)
> nrr.thr.q5.st.gp <- qpPRscoreThreshold(nrr.q5.st.gp,r, level=0.5,
+ recall.level=FALSE, max.score=0)
> nrr.g.q5.st.gp <- qpGraph(nrr.q5.st.gp, threshold=nrr.thr.q5.st.gp,
+ return.type="graphNEL")
> nrr.g.q5.st.gp
A graphNEL graph with undirected edges
Number of Nodes = 57
Number of Edges = 59
```

• Perform now a differential expression analysis using *limma* to search for genes changing between the mutant and the wild strain adjusting for the growth protocol:

```
> library(limma)
> design <- model.matrix(~ factor(Strain) + factor(GrowthProtocol), data=eset100)
> fit <- lmFit(eset100, design)
> fit <- eBayes(fit)
> deGenes <- topTable(fit, coef=2, p.value=0.1, n=Inf)$ID
> length(deGenes)
[1] 22
```

Integrating phenotype information

- Plot the resulting network highlighting the previously found differentially expressed genes:
 - > qpPlotNetwork(nrr.g.q5.st.gp, pairup.i=c(TFgenes, "Strain"),
 - pairup.j=nodes(nrr.g.q5.st.gp),
 - highlight=deGenes, annotation="org.EcK12.eg.db")

- A meta-analysis approach to identify common interactions with the function qpGenNrr() (Roverato and Castelo, 2012).
- A model-based approach to the Selection of networks using partial correlation estimation after dimension reduction with the NRR.
- Performing calculations in parallel with MPI via *snow/parallel* and the argument clusterSize.
- Integrating genotype and phenotype information through *smlSet* objects. It works essentially the same as when integrating phenotypic information from *ExpressionSet* objects but the dimension of genotype data poses computational challenges that *qpgraph* is not addressing yet.

Concluding remarks

- The *qpgraph* package implements a principled statistical methodology for inferring networks from high-throughput genomics data.
- This methodology is based on graphical model theory that leads to powerful and exact tests of conditional independence for pure continuous and mixed, continuous and discrete, data.
- Although it is computationally demanding, the operations through the interacting pairs are independent allowing for parallel execution with MPI and nearly linear speed-ups.
- It currently lacks the implementation of appropriate data structures for a more efficient and easy use of the methods that the package provides. Improvements in this direction should appear in the next releases.
- In the twitter account @robertclab we will be posting when a release update with a bugfix of *qpgraph* is available via biocLite().

- Brem *et al.* The landscape of genetic complexity across 5,700 gene expression traits in yeast. *PNAS*, 102:1572–1577, 2005.
- Castelo and Roverato. A robust procedure for Gaussian graphical model search from microarray data with *p* larger than *n. J. Mach. Learn. Res.*, 7:2621–2650, 2006.
- Castelo and Roverato. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J. Comput. Biol., 16:213–227.
- Covert *et al.* Integrating high-throughput and computational data elucidates bacterial networks. *Nature*, 429:92–96, 2004.
- Dobra *et al.* Sparse graphical models for exploring gene expression data. *J. Mult. Anal.*, 90:196–212, 2004.
- Dykstra *et al.* Establishing the positive definiteness of the sample covariance matrix. *Ann. Math. Statist.*, 41:2153–2154, 1970.

- Edwards. Introduction to graphical modelling, Springer, 2000.
- Friedman, Hastie and Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9:432–441, 2008.
- Gama-Castro *et al.* RegulonDB version 7.0: transcriptional regulation of *Escherichia coli* K-12 integrated within genetic sensory response units. *Nucl. Acids Res.*, 39(suppl 1):D98–D105, 2011.
- Lauritzen. Graphical Models, Oxford University Press, 1996.
- Roverato and Castelo. Learning undirected graphical models from multiple datasets with the generalized non-rejection rate. *Int. J. Approx. Reas., in press.*
- Schäfer and Strimmer. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. *Stat. Appl. Genet. Mol. Biol.*, 4:art32, 2005.
- Segal et al. Learning module networks. J. Mach. Learn. Res., 6:557-588, 2005.

> toLatex(sessionInfo())

- R version 2.15.0 (2012-03-30), x86_64-apple-darwin9.8.0
- Locale: C/UTF-8/C/C/C/C
- Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils
- Other packages: AnnotationDbi 1.19.28, Biobase 2.17.6, BiocGenerics 0.3.0, DBI 0.2-5, GenomicRanges 1.9.39, IRanges 1.15.24, RSQLite 0.11.1, Rgraphviz 1.35.2, graph 1.35.1, limma 3.13.13, mvtnorm 0.9-9992, org.EcK12.eg.db 2.7.1, org.Sc.sgd.db 2.7.1, qpgraph 1.13.30, rtracklayer 1.17.13
- Loaded via a namespace (and not attached): BSgenome 1.25.3, Biostrings 2.25.8, GGBase 3.19.6, Matrix 1.0-6, RCurl 1.91-1, Rsamtools 1.9.24, XML 3.9-4, annotate 1.35.3, bitops 1.0-4.1, genefilter 1.39.0, lattice 0.20-6, snpStats 1.7.3, splines 2.15.0, stats4 2.15.0, survival 2.36-14, tools 2.15.0, xtable 1.7-0, zlibbioc 1.3.0