
Working with Bioconductor Objects: Microarray

Analysis

Martin Morgan, Chao-Jen Wong

Fred Hutchinson Cancer Research Center

19-21 January, 2010

(Adapted from F. Hahne and R. Gentleman, ‘The ALL Dataset’, in Bioconduc-
tor Case Studies [2])

1 Structures for genomic data: ExpressionSet

Genomic data can be very complex, usually consisting of a number of different
bits and pieces. In Bioconductor we have taken the approach that these pieces
should be stored in a single structure to easily manage the data. The package
Biobase contains standardized data structures to represent genomic data. The
ExpressionSet class is designed to combine several different sources of informa-
tion into a single convenient structure. An ExpressionSet can be manipulated
(e.g., subsetted, copied), and is the input to or output of many Bioconductor
functions.

The data in an ExpressionSet consist of

• assayData: Expression data from microarray experiments (assayData is
used to hint at the methods used to access different data components, as
we show below).

• metadata: A description of the samples in the experiment (phenoData),
metadata about the features on the chip or technology used for the experi-
ment (featureData), and further annotations for the features, for example
gene annotations from biomedical databases (annotation).

• experimentData: A flexible structure to describe the experiment.

The ExpressionSet class coordinates all of these data, so that you do not
usually have to worry about the details. However, an ExpressionSet needs to
be created in the first place, because it will be the starting point for many of
the analyses using Bioconductor software.

1

ExpressionSet instances are created in one of two ways. Often, an Expres-
sionSet is the output of an R function. For instance, justRMA in the affy Biocon-
ductor package reads in manufacturer CEL files and outputs an ExpressionSet .
Alternatively, an ExpressionSet can be assembled from its constituent parts;
this is illustrated in the vignette called “An introduction to Biobase and Ex-
pressionSets”. For future reference, this vignette can be viewed in your web
browser with the command

> browseVignettes("Biobase")

or by visiting the Biobase page on the Bioconductor web site.
Here we use an ExpressionSet derived from a study of Acute Lymphoblastic

Leukemia (ALL). The data set is available in the data package ALL. The main
object in the ALL package is ALL, an instance of ExpressionSet. It consist of
microarray data (chip series HG-U95Av2) from 128 individuals – 95 sample
with B-cell ALL and 33 with T-cell ALL. The expression measures have been
preprocessed using the robust multichip average (RMA) method, implemented
in the package affy .

Let’s first load the ALL data, and view the ALL object.

> library(ALL) # attach the ALL package to the search path

> data(ALL) # load the ALL data into the global work space

> ALL # view the ALL instance -- our first ExpressionSet!

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 128 samples
element names: exprs

protocolData: none
phenoData
sampleNames: 01005 01010 ... LAL4 (128 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

This prints a short overview of the ExpressionSet . The ExpressionSet is an
example of an S4 class. The authors of the class have provided methods for
accessing the data in the class. For instance,

exprs(ALL) returns the matrix of expression values (probe sets as rows, samples
as columns). In the ALL data, the expression values are pre-processed
and log-transformed.

pData(ALL) extracts a data frame describing the sample phenotype data.

annotation(ALL) reports the type of microarray chip used in this experiment.

2

http://bioconductor.org/packages/release/bioc/html/affy.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html
http://bioconductor.org/packages/release/data/experiment/html/ALL.html

There are additional methods defined to make common operations easy. For
instance, $ allows one to access columns of phenotypic data. This

> ALL$BT

[1] B2 B2 B4 B1 B2 B1 B1 B1 B2 B2 B3 B3 B3 B2 B3 B B2 B3 B2 B3 B2 B2
[23] B2 B1 B1 B2 B1 B2 B1 B2 B B B2 B2 B2 B1 B2 B2 B2 B2 B2 B4 B4 B2
[45] B2 B2 B4 B2 B1 B2 B2 B3 B4 B3 B3 B3 B4 B3 B3 B1 B1 B1 B1 B3 B3 B3
[67] B3 B3 B3 B3 B3 B1 B3 B1 B4 B2 B2 B1 B3 B4 B4 B2 B2 B3 B4 B4 B4 B1
[89] B2 B2 B2 B1 B2 B B T T3 T2 T2 T3 T2 T T4 T2 T3 T3 T T2 T3 T2
[111] T2 T2 T1 T4 T T2 T3 T2 T2 T2 T2 T3 T3 T3 T2 T3 T2 T
Levels: B B1 B2 B3 B4 T T1 T2 T3 T4

retrieves the vector of values in the BT column of pData(ALL).

2 Subsetting

Another important method available with the ExpressionSet class is subsetting.
The underlying expression values in an experiment are represented as a matrix,
and the ExpressionSet reflects this data – it can be subset by rows (features) and
/ or columns (samples). For instance, to select the samples that have mol.biol

phenotype NEG, we might extract the mol.biol phenotype data using $, and then
compare this to NEG to produce a vector of logical values that are TRUE whenever
the value of mol.biol is NEG; to illustrate, we summarize this vector by tabulating
the TRUE and FALSE occurrences

> table(ALL$mol.biol == "NEG")

FALSE TRUE
54 74

We can use this to create a subset of the original ExpressionSet with just these
samples

> idx <- ALL$mol.biol == "NEG"

> ALL[,idx]

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 74 samples
element names: exprs

protocolData: none
phenoData
sampleNames: 01010 04007 ... LAL4 (74 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

3

Note that there are only 74 samples in this ExpressionSet , and that the pheno-
type and expression data have been subset in a coordinated fashion.

Additional methods operating on ExpressionSet can be found on the help
page accessible with

> class?ExpressionSet

Exercise 1
The objective of this exercise is to create a subset of ALL containing only those
samples wtih B-cell ALL tumors with either BCR/ABL or NEG abnormalities.

• Which samples originate from B-cell tumors? The BT covariate in the
phenotypic data encodes the tissue type; use grep to select any value of
BT that begins with the letter B.

• Which samples are associated with either the molecular subtype BCR/ABL
or NEG? The molecular subtypes are labeled in the mol.biol phenotypic
covariate. To answer this question, convert ALL$mol.biol from a factor
to a character vector using as.character. Then use the %in% function
(see ?"%in%") to match either element of the character vector c("NEG",

"BCR/ABL").

• Use the intersect function to find the intersection between the set of
samples from B-cell tumors, and the set of samples with either NEG or
BCR/ABL molecular biology.

• Finally, create a subset of the ALL object that contains B-cell tumors with
NEG or BCR/ABL cytotype.

Solution:

> bcell <- grep("^B", as.character(ALL$BT))

> types <- c("NEG", "BCR/ABL")

> moltyp <- which(as.character(ALL$mol.biol) %in% types)

> idx <- intersect(bcell, moltyp)

> ALL_bcrneg <- ALL[, idx]

> ALL_bcrneg

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 79 samples
element names: exprs

protocolData: none
phenoData
sampleNames: 01005 01010 ... 84004 (79 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

4

ALL_bcrne$mol.biol is a factor. The ‘levels’ of a factor are its set of possible
values. Since we have reduced the set of samples, we need to remove the empty
levels .

> ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol)

3 Non-specific filtering

A common next step is to use a non-specific filter to remove probe sets that we
know, a priori will not be informative in our analysis. For instance, probe sets
that are not annotated to a particular ENTREZ gene id will not be informa-
tive in a study relies on ENTREZ ids to understand biology. Here we use the
nsFilter functon from the genefilter package to filter on a number of different
criteria.

> library(genefilter)

> library(hgu95av2.db) ## annotation package for the ALL dataset

> filt_bcrneg <- nsFilter(ALL_bcrneg, require.entrez=TRUE,

+ remove.dupEntrez=TRUE, feature.exclude="^AFFX")

> filt_bcrneg$filter.log

$numLowVar
[1] 4400

$numDupsRemoved
[1] 2907

$feature.exclude
[1] 19

$numRemoved.ENTREZID
[1] 900

This removes probes that do not have ENTREZ gene identifiers, groups of
probes that map to the same ENTREZ gene id, and probes that are annotated
as Affymetrix control probes. An entrance into the literature on non-specific
filtering is [1].

Exercise 2
Consult the manual for the function nsFilter (use ?nsFilter after loading the
genefilter library) for the different options for filtering features from an Expres-

sionSet and the return value of filt_bcrneg.

> ALLfilt_bcrneg <- filt_bcrneg$eset

5

http://bioconductor.org/packages/release/bioc/html/genefilter.html
http://bioconductor.org/packages/release/bioc/html/genefilter.html

4 Directions

The text and exercises introduce you to S4 objects, accessors, and subsetting.
You gained practice using the R help system. The exercises illustrated key data
manipulation steps in a microarray work flows. There are many opportunities
for learning more; The Bioconductor Case Studies book [2] and limma Biocon-
ductor package vignette (for two-color array pre-processing) are two excellent
next steps.

• R version 2.12.1 (2010-12-16), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: ALL 1.4.7, AnnotationDbi 1.12.0, BSgenome 1.18.3,
BSgenome.Scerevisiae.UCSC.sacCer2 1.3.16, Biobase 2.10.0,
Biostrings 2.18.2, DBI 0.2-5, DESeq 1.2.1, GenomicFeatures 1.2.3,
GenomicRanges 1.2.3, IRanges 1.8.8, IWB2011 1.0.0, RSQLite 0.9-4,
Rsamtools 1.2.3, ShortRead 1.8.2, akima 0.5-4, edgeR 2.0.3,
genefilter 1.32.0, hgu95av2.db 2.4.5, lattice 0.19-17, locfit 1.5-6,
org.Hs.eg.db 2.4.6, org.Sc.sgd.db 2.4.6

• Loaded via a namespace (and not attached): RColorBrewer 1.0-2,
RCurl 1.5-0, XML 3.2-0, annotate 1.28.0, biomaRt 2.6.0,
geneplotter 1.28.0, grid 2.12.1, hwriter 1.3, limma 3.6.9,
rtracklayer 1.10.6, splines 2.12.1, survival 2.36-2, tools 2.12.1, xtable 1.5-6

References

[1] R. Bourgon, R. Gentleman, and W. Huber. Independent filtering increases
detection power for high-throughput experiments. Proc. Natl. Acad. Sci.
U.S.A., 107:9546–9551, May 2010.

[2] Florian Hahne, Wolfgang Huber, Robert Gentleman, and Seth Falcon. Bio-
conductor Case Studies (Use R). Springer, 1 edition, August 2008.

6

http://bioconductor.org/packages/release/bioc/html/limma.html

	Structures for genomic data: ExpressionSet
	Subsetting
	Non-specific filtering
	Directions

