Annotation Packages: the big picture

PLATFORM
PKGS

GENE ID

ORG

PKGS
HOMOLOGY

PKGS

TRANSCRIPT

\

GENE ID

GENE ID
ONTO ID 1 PKGS
GENE ID

SYSTEM
BIOLOGY
(GO, KEGG)

ONTO ID’'S

Bioconductor annotation packages

Major types of annotation in Bioconductor.
Gene centric AnnotationDbi packages:

» Organism level: org.Mm.eg.db.

> Platform level: hgul33plus2.db.

» System-biology level: GO.db or KEGG.db.
biomaRt:

» Query web-based 'biomart’ resource for genes, sequence,
SNPs, and etc.

Genome centric GenomicFeatures packages:
» Transriptome level: TxDb.Hsapiens.UCSC.hg19.knownGene

» Generic features: Can generate via GenomicFeatures

AnnotationDbi

AnnotationDbi is a software package that enables the package
annotations:

» Each supported package contains a database.
» AnnotationDbi allows access to that data via Bimap objects.

» Some databases depend on the databases in other packages.

Organism-level annotation

There are a number of organism annotation packages with names
starting with org, e.g., org.Hs.eg.db — genome-wide annotation for
human.

library(org.Hs.eg.db)
org.Hs.eg()
org.Hs.eg_dbInfo()
org.Hs.egGENENAME
org.Hs.eg_dbschema ()

vV V. Vv VvV

platform based packages (chip packages)

There are a number of platform or chip specific annotation
packages named after their respective platforms, e.g. hgu95av2.db
annotations for the hgu95av2 Affymetrix platform.

> These packages appear to contain a lot of data but it's an
illusion.

library (hgu95av2.db)
hgu95av2()
hgu95av2_dbInfo()
hgu95av2GENENAME
hgu95av2_dbschema ()

V VvV Vv VvV

Gene centric annotations

What can you hope to extract from an annotation package?

>

>

>

GO IDs: GO

KEGG pathway IDs: PATH
Gene Symbols: SYMBOL
Chromosome start and stop locs: CHRLOC and CHRLOCEND
Alternate Gene Symbols: ALIAS
Associated Pubmed IDs: PMID
RefSeq IDs: REFSEQ

Unigene IDs: UNIGENE

PFAM IDs: PFAM

Prosite IDs: PROSITE
ENSEMBL IDs: ENSEMBL

Basic Bimap structure and getters

Bimaps create a mapping from one set of keys to another. And
they can easily be searched.

> toTable: converts a Bimap to a data.frame

> get: pulls data from a Bimap

> mget: pulls data from a Bimap for multiple things at once
> head(toTable (hgu95av2SYMBOL))

> get("38187_at",hgu95av2SYMBOL)
> mget (c("38912_at","38187_at") ,hgu95av2SYMBOL, ifnotfound=NA)

Reversing and subsetting Bimaps

Bimaps can also be reversed and subsetted:

VVVVVYVVYV

> revmap: reverses a Bimap

» [[,[: Bimaps are subsettable.

##revmap

mget (c ("NAT1", "NAT2") ,revmap (hgu95av2SYMBOL) , ifnotfound=NA)
##subsetting

head (toTable (hgu95av2SYMBOL[1:3]))
hgu95av2SYMBOL[["1000_at"]]

revmap (hgu95av2SYMBOL) [["MAPK3"]]

##0r you can combine things

toTable (hgu95av2SYMBOL [c("38912_at", "38187_at")])

using merge, cbind

sometimes you will want to combine data
» cbind: appends multiple columns (blindly by order)

> merge: "joins” a pair of data.frames based on a key

1st lets get some data

symbols = head(toTable (hgu95av2SYMBOL) ,n=3)

chrlocs = head(toTable (hgu95av2CHRLOC) ,n=3)

pmids = head(toTable (hgu95av2PMID),n=3)

##cbind

cbind(symbols, pmids, chrlocs)

##merge

merge (symbols, pmids, by.x="probe_id", by.y="probe_id")

vV VVVVYVVYV

Bimap keys

Bimaps create a mapping from one set of keys to another. Some
important methods include:

» keys: centrallD for the package (directional)
» Lkeys: centrallD for the package (probe ID or gene ID)
» Rkeys: centrallD for the package (attached data)

> keys (hgu95av2SYMBOL [1:4])

> Lkeys (hgu95av2SYMBOL[1:4])
> Rkeys (hgu95av2SYMBOL) [1:4]

More Bimap structure

Not all keys have a partner (or are mapped)

V V.V Vv VvV

>

>

mappedkeys: which of the key are mapped (directional)

mappedLkeys mappedRkeys: which keys are mapped (absolute
reference)

count .mappedkeys: Number of mapped keys (directional)

count .mappedLkeys,count .mappedRkeys: Number of mapped
keys (absolute)

mappedkeys (hgu95av2SYMBOL[1:10])
mappedLkeys (hgu95av2SYMBOL [1:10])
mappedRkeys (hgu95av2SYMBOL [1:10])

count .mappedkeys (hgu95av2SYMBOL [1:100])
count .mappedLkeys (hgu95av2SYMBOL [1:100])
count .mappedRkeys (hgu95av2SYMBOL [1:100])

Bimap Conversions

How to handle conversions from Bimaps to lists

VVVVVVVYV

> as.list: converts a Bimap to a list

v

unlist2: unlists a list minus the name-mangling.
> as.data.frame: converts a Bimap to a data.frame

> toTable: converts a Bimap to a data.frame

as.list (hgu95av2SYMBOL [c("38912_at", "38187_at")])
unlist(as.list (hgu95av2SYMBOL [c("38912_at","38187_at")]))
unlist2(as.list (hgu95av2SYMBOL [c("38912_at","38187_at")]))
##but what happens when there are

##repeating values for the left key?

unlist(as.list(revmap (hgu95av2SYMBOL) [c("STAT1", "PTGER3")]))
##unlist2 can help with this
unlist2(as.list(revmap (hgu95av2SYMBOL) [c ("STAT1", "PTGER3")]))

toggleProbes

How to hide/unhide ambiguous probes.

VVVVVVVVVVVVVYV

> toggleProbes: hides or displays the probes that have multiple
mappings to genes.

How many probes?

dim(hgu95av2ENTREZID)

Make a mapping with multiple probes exposed
multi <- toggleProbes (hgu95av2ENTREZID, "all")

How many probes?

dim(multi)

Make a mapping with ONLY multiple probes exposed
multiOnly <- toggleProbes(multi, "multiple")

How many probes?

dim(multiOnly)

Then make a mapping with ONLY single mapping probes
singleOnly <- toggleProbes(multiOnly, "single")

How many probes?

dim(singleOnly)

GO

Some important considerations about the Gene Ontology
» GO is actually 3 ontologies (CC, BP and MF)
» Each ontology is a directed acyclic graph.

» The structure of GO is maintained separarately from the genes
that these GO IDs are usually used to annotate.

GO to gene mappings are stored in other packages

Mapping Entrez IDs to GO

» Each ENTREZ ID is associated with up to three GO
categories.

> The objects returned from an ordinary GO mapping are
complex.

> go <- org.Hs.egGO[["1000"]]
> length(go)

> gol[[2]]1$GOID

> gol[[2]]1$0ntology

Working with GO.db

» Encodes the hierarchical structure of GO terms.

» The mapping between GO terms and individual genes is
maintained in the GO mappings from the other packages.

> the difference between children and offspring is how many
generations are represented. Children only nets you one step
down the graph.

library(GO.db)

1s("package:GO.db")

find children

as.1ist (GOMFCHILDREN["GO:0008094"])

all the descendants (children, grandchildren, and so on)
as.1ist (GOMFOFFSPRING["GO:0008094"])

V V.V Vv VvyVv

GO helper methods
Using the GO helper methods

VVVVVVVVVYV

» The GO terms are described in detail in the GOTERM
mapping.

» The objects returned by GO.db are GOTerms objects, which
can make use of helper methods like GOID, Term, Ontology
and Definition to retrieve various details.

> You can also pass GOIDs to these helper methods.

##Mapping a GOTerms object

go <- GOTERM[1]

GOID(go)

Term(go)

##0R you can supply GO IDs

id = c("G0:0007155","G0:0007156")
GOID(id)

Term(id)

Ontology (id)

Definition(id)

Working with other packages

VVVVVVYyV

» will contain unique kinds of data.

> there should be manual pages for all the different mappings.

library("targetscan.Hs.eg.db")

help

7targetscan.Hs.egTARGETS

tab = toTable(targetscan.Hs.egTARGETS)

head(tab[tab/[, "name"]=="miR-187",])

or you could just use the get method

geneTargets <- get("miR-187", revmap(targetscan.Hs.egTARGETS))

Connecting data between packages

V V.V Vv Vvyv

> pay attention to the foreign keys (geneTargets was an EG ID)

> then use those keys as input for the next piece of data you
seek

» for advanced users: it is possible to join between packages

library(org.Hs.eg.db)

gos <- toTable(org.Hs.egG0)

head(gos[gos[, "gene_id"] JinJ), geneTargets,])

or alternatively you can generate lists of answers:
unlist (mget (geneTargets, org.Hs.egG0)[1])[1:6]
unlist2(mget (geneTargets, org.Hs.egGO)[1])[1:6]

Creating packages

> available.dbschemas to discover supported organisms
> makeDBPackage to create new chip packages
> makeDBPackage requires probe-gene mapping data

Discover available schemas
available.dbschemas ()
Create a package
makeDBPackage ("HUMANCHIP_DB",
affy = TRUE,
prefix = "hgu9bav2",
fileName = "/srcFiles/hgu95av2/HG_U95Av2_annot.c
otherSrc = c(
EA="/srcFiles/hgu95av2/hgu95av2.EA. txt",
UMICH="/sqliteGen/srcFiles/hgu95av2/hgu95av2_U
baseMapType = "gbNRef",
version = "1.0.0",
manufacturer = "Affymetrix",
chipName = "hgu95av2",
manufacturerUrl = "http://www.affymetrix.com")

+ + + 4+ +++++++VVVYV

makeOrgPackageFromNCBI

>
+
+
+
+
+
+

> makeOrgPackageFromNCBI generates an org package
» Requires that you have an NCBI Taxonomy ID

makeOrgPackageFromNCBI (version = "0.1",

author = "Some One <so@someplace.org>",
maintainer = "Some One <so@someplace.or
outputDir = ".",

tax_id = "59729",

genus = "Taeniopygia',

species = "guttata')

AnnotationDb Objects

» Loading the package will create this

> Will be named after the package

» Some useful accesors include:

vV vy VvVYyy

keytypes
keys
cols
select

AnnotationDb Objects

> org.Hs.eg.db

OrgDb object:

| DBSCHEMAVERSION: 2.1

| Db type: OrgDb

| package: AnnotationDbi

| DBSCHEMA: HUMAN_DB

| ORGANISM: Homo sapiens

| SPECIES: Human

| EGSOURCEDATE: 2011-Sepl4d

| EGSOURCENAME: Entrez Gene

| EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

| CENTRALID: EG

| TAXID: 9606

| GOSOURCENAME: Gene Ontology

| GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/arch
| GOSOURCEDATE: 20110910

| GOEGSOURCEDATE: 2011-Sepl4

| GOEGSOURCENAME: Entrez Gene

|
|

GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
VEAAQATIRATNAME . WEAN ATNAME

Using AnnotationDb accessors

> head(cols(org.Hs.eg.db))

[1] "AccNuM" "ALTAS2EG" "CHR" "ENZYME" "GENENAME"
[6] "MAP"

> head(keytypes(org.Hs.eg.db))

[1] "AccNUM" "ALTAS2EG" "CHR" "ENZYME" "GENENAME"
[6] "MAP"

> head(keys(org.Hs.eg.db))
[1] ||1|| ||2|l ||3|| |l9|| Illoll ||11||

> c = c("SYMBOL", "CHR")
> k = keys(org.Hs.eg.db) [1:4]
> select(org.Hs.eg.db, keys=k, cols=c)

gene_id symbol chromosome
A1BG 19
2 A2M 12
3 A2MP1 12
9 NAT1 8

[Er

D wWw N

Using Select with another keytype

> ¢ = c¢("SYMBOL", "CHR")

> kt = c("SYMBOL")

> k = head(Rkeys(org.Hs.egSYMBOL))

> select(org.Hs.eg.db, keys=k, cols=c, keytype=kt)

gene_id symbol chromosome

1 1 A1BG 19
16693 2 A2M 12
21882 3 A2MP1 12
40756 9 NAT1 8
2 10 NAT2 8
12837 11 AACP 8

Using biomaRt

Setting up a biomaRt object
» biomaRt offers several "marts” to get data from
» each "mart” can have several datasets

» the mart object has to be configured with your choices

library(biomaRt)

##1ist the marts

head(listMarts())

list the Datasets for a mart

head (listDatasets (useMart ("ensembl")))

now set up the fully qualified mart object

ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl

vV VVVVVYV

Using biomaRt

Choosing biomaRt options
> filters are used to limit the query
> values are the values available for a specified filter

» attributes are information we want to retrieve

need to be able to list filters
head(listFilters(ensembl))

myFilter <- '"chromosome_name"

and list values that you expect back
head(filterOptions (myFilter, ensembl))

myValues <- c("21", "22")

and list attributes

head(listAttributes (ensembl))

myAttributes <- c("ensembl_gene_id","chromosome_name")

V VVVVVVVYV

Using biomaRt

Calling getBM will extract the information

> getBM takes the information we have just shown you how to
obtain as its parameters.

» With the exception of the mart object all these parameters are
vectors so you can request multiple values back if they are
available etc.

» If you should need to specify multiple filters, then you will
need to pass the values parameter in as a list of vectors
instead of just a vector.

then you can assemble a query

res <- getBM(attributes = myAttributes,
filters = myFilter,
values = myValues,
mart = ensembl)

vV + + + Vv Vv

head (res)

	Bioconductor Annotation Packages
	AnnotationDbi
	AnnotationDbi Basics
	Working with GO.db
	Package Generation
	Using biomaRt

