Sub-cellular localisation of proteins with pRoloc

Laurent Gatto
lg390@cam.ac.uk
Cambridge Centre For Proteomics University of Cambridge
European Bioinformatics Institute (EBI)

$18^{\text {th }}$ November 2010
L. Gatto

Plan

(1) Sub-cellular localisation

- Why
(2) Organelle proteomics
- How
(3) proloc
- The 3 concepts of pRoloc
- Examples
- Comparision

4 Future work

Plan

(1) Sub-cellular localisation

- Why
(2) Organelle proteomics
- How
(3) pRoloc
- The 3 concepts of pRoloc
- Examples
- Comparision
(4) Future work

Localisation is function

- Meet interaction partners and functional conditions.
- Knowing where a protein resides helps to study its function.
- Assigning proteins with known function to organelles helps to refine our understanding of these organelles.

Organelle proteomics

There are many ways to perform organelle proteomics. And even for similar experiments, data analysis methodologies vary.

Motivation and goals of pRoloc

Developing a organelle proteomics framework to compare analysis methodologies. Develop new/better analyses pipelines.

Plan

(1) Sub-cellular localisation

- Why

(2) Organelle proteomics

- How
(3) pRoloc
- The 3 concepts of pRoloc
- Examples
- Comparision
(4) Future work

The many ways of...

from Gatto et al. 2010 PMID: 21046620
L. Gatto

Bioconductor Developer Meeting 2010

The 3 concepts of pRoloc

Plan

(1) Sub-cellular localisation

- Why
(2) Organelle proteomics
- How
(3) pRoloc
- The 3 concepts of proloc
- Examples
- Comparision
(4) Future work

Assign and see

- Assign sub-cellular localisation predict() - PSL-DA and $\chi^{2} \ldots$
- Visualisation the results
visualise() - currently PCA and PDP.
- Handle missing data
impute() - to do.

The test data

From Dunkley et al., 'Mapping the Arabidopsis organelle proteome', PNAS 103(17), 2006 (PMID: 16618929). Good data set!

```
> library(pRoloc)
Scalable Robust Estimators with High Breakdown Point (version 1.1-00)
> data(dunkley2006)
> dunkley2006
MSnSet (storageMode: lockedEnvironment)
assayData: }689\mathrm{ features, 16 samples
    element names: exprs
protocolData: none
phenoData
    sampleNames: M1F1A M1F4A ... M2F11B (16 total)
    varLabels: membrane.prep fraction replicate
    varMetadata: labelDescription
featureData
    featureNames: At2g01470 At5g42020 ... At5g39510 (689 total)
    fvarLabels: train test ... New (5 total)
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
    pubMedIds: 16618929
Annotation:
- - - Processing information - - -
Loaded on Tue Nov 9 09:43:54 2010.
Normalised to sum of intensities.
    MSnbase version: 0.0.2
    Xcms version: 1.25.1
```

The 3 concepts of pRoloc
> pData(dunkley2006)

	membrane.prep	fraction replicate	
M1F1A	1	1	A
M1F4A	1	4	A
M1F7A	1	7	A
M1F11A	1	11	A
M1F2B	1	2	B
M1F5B	1	5	B
M1F8B	1	8	B
M1F11B	1	11	B
M2F1A	2	1	A
M2F4A	2	4	A
M2F7A	2	7	A
M2F11A	2	11	A
M2F2B	2	2	B
M2F5B	2	5	B
M2F8B	2	8	B
M2F11B	2	11	B
> head (fData(dunkley2006))			

At2g01470	ER	ER	known	PLSDA known
At5g42020	ER	ER	known	PLSDA known
At4g37640	ER	ER	known	PLSDA known
At5g61790	ER	ER	known	PLSDA known
At5g17770	ER	ER	known	PLSDA known
At4g01320	ER	ER	known	PLSDA known

L. Gatto Bioconductor Developer Meeting 2010

```
Chi}\mp@subsup{}{}{2
\chi}\mp@subsup{}{2}{=}=\mp@subsup{\sum}{i}{}(\mp@subsup{x}{i}{}-\mp@subsup{x}{p}{}\mp@subsup{)}{}{2}/\mp@subsup{x}{p}{
xi
xp: normalised value of marker in fraction i
Adapted from Andersen et al., 'Proteomic characterization of the human centrosome by protein correlation profiling', Nature. 2003 Dec 4;426(6966):570-4. (PMID: 14654843)
```

```
> mrk <- fData(dunkley2006)$train == "ER"
```

> mrk <- fData(dunkley2006)$train == "ER"
> crl <- fData(dunkley2006)$train == "unknown"
> crl <- fData(dunkley2006)\$train == "unknown"
> pchi2 <- predict(dunkley2006, method = "chi2", markers = mrk,
> pchi2 <- predict(dunkley2006, method = "chi2", markers = mrk,

+ correlaters = crl, t = 0.1, organelle = "ER")
+ correlaters = crl, t = 0.1, organelle = "ER")
> pchi2
> pchi2
Object of prediction class Chi2
Object of prediction class Chi2
for organelle: ER
for organelle: ER
49 markers
49 markers
547 correlaters
547 correlaters
100 predicted with threshold 0.1

```
    100 predicted with threshold 0.1
```

> .fractions <- order(pData(dunkley2006)\$fraction)
> .num <- sort(pData(dunkley2006)\$fraction)
> viz <- visualise(dunkley2006, method = "pdp", fractionsOrder =
$+\quad$ fractionsNum $=$.num, markers $=$ list $(E R=m r k)$, correlaters
$+\quad$ prediction(pchi2)))
> viz
Object of visualisation class PDP
16 fractions - 689 features
1 marker (s)

The 3 concepts of pRoloc Examples
Comparision
> plot(viz, colour = "red")

ER

L. Gatto

Bioconductor Developer Meeting 2010

The 3 concepts of pRoloc

PLS-DA - PCA visualisation

Dunkley et al. 2006

```
> ppls <- predict(dunkley2006, method = "plsda", annot = 1, training = fData(dunkley2006)$train !=
```

$+\quad$ "unknown", classProb $=0.95$)
> ppls
Object of prediction class PLSDA
Call: plsda.msnset ($\mathrm{x}=$ object, annot $=1$, training $=\ldots 2$, classProb $=0.95$)
Data centered and scaled before modelling.
442 new prediction using minimum class probability of 0.95
>table(annotation(ppls))

ER	Golgi mit/plastid	PM	unknown	vacuole	
195	103	144	116	105	26

> fData(dunkley2006)\$plsda <- annotation(ppls)
L. Gatto Bioconductor Developer Meeting 2010

The 3 concepts of pRoloc Examples

```
> viz <- visualise(dunkley2006)
> viz
Object of visualisation class PCA
Call:
PcaCov(x = object, scale = TRUE, center = TRUE)
Importance of components:
    PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.251 0.35446 0.19589 0.15266 0.12798 0.10758 0.09566
Proportion of Variance 0.862 0.06925 0.02115 0.01284 0.00903 0.00638 0.00504
Cumulative Proportion 0.862 0.93133 0.95248 0.96532 0.97435 0.98073 0.98577
    PC8 PC9 PC10 PC11 PC12 PC13
Standard deviation 0.09135 0.08136 0.06709 0.06187 0.05021 0.0006978
Proportion of Variance 0.00460 0.00365 0.00248 0.00211 0.00139 0.0000000
Cumulative Proportion 0.99037 0.99402 0.99650 0.99861 1.00000 1.0000000
PC14 PC15 PC16
Standard deviation 0.0006243 0.0005828 0.0004681
Proportion of Variance 0.0000000 0.0000000 0.0000000
Cumulative Proportion 1.0000000 1.0000000 1.0000000
An object of class "AnnotatedDataFrame"
    featureNames: At2g01470 At5g42020 ... At5g39510 (689 total)
    varLabels: train test ... plsda (6 total)
    varMetadata: labelDescription
```


The 3 concepts of pRoloc

Examples

```
> print(plot(viz, k = 3, annotation = "plsda"))
```

ER \circ Golgi 0	mit/plastid PM	unknown vacuole
		$\left[\begin{array}{lllll}-2 & & 1 & 1 & 1 \\ -1 & & 0 & 1 & 2 \\ -0 & & & & \\ -1 & & \text { PC3 } & & -1 \\ & & & & -2 \\ & & & & -3 \\ -4 & -3 & -2 & -1 & \\ 1 & 1 & 1 & & -4\end{array}\right]$
	0 5 -5 PC 2 -0 0 -5 0 -5 $-$	
-10 0 5 10 -5 -0 PC1 0 -5		

L. Gatto

Bioconductor Developer Meeting 2010

Sub-cellular localisation

The 3 concepts of pRoloc Examples

```
> plot(viz, k = c(1, 2), annotation = "plsda", col = c("red", "green",
    "steelblue", "orange", "grey", "purple"), alpha = 0.7)
```


Colours

- ER
- Golgi
- mit/plastid
- PM
unknown
- vacuole
L. Gatto

Bioconductor Developer Meeting 2010

The 3 concepts of pRoloc
Examples

Comparision

Chi2 vs. PLS-DA

L. Gatto

Plan

(1) Sub-cellular localisation

- Why
(2) Organelle proteomics
- How
(3) pRoloc
- The 3 concepts of pRoloc
- Examples
- Comparision

4) Future work

@todo - more cutting edge

- Cross validation.
- Work on better and interactive visualisation.
- How to most efficiently combine different experiments (Trotter et al., 2010 PMID: 21058340).
- How to most efficiently combine/analyse technical/biological replicates?
- Analysis/development/statistical framework for more elaborated analys is designs - dynamic (time) and differential (different conditions) aspects of organelle proteomics.
http://github.com/lgatto/pRoloc

Acknowledgement

- CCP team, especially Mike Deery, Arnoud Groen and of course Kathryn Lilley.
- Juan Antonio Vizcaíno, Henning Hermjakob from EBI
- Wolfgang Huber from EMBL

Funding

- BBSRC Tools and Resources Development Fund Award.

Thank you for you attention.

