

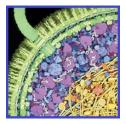


# BioNet - Functional analysis of biological networks

### Daniela Beisser, Gunnar W. Klau, Thomas Dandekar, Tobias Mueller, Marcus Dittrich

Department of Bioinformatics University of Würzburg






## Integrated network biology

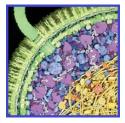
 Integration of different data sets becomes more and more important



Wordle - ISMB2010 highlight talks





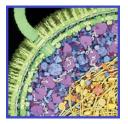



## Integrated network biology

- Integration of different data sets becomes more and more important
- Biological networks to put genes or proteins in context



Wordle - ISMB2010 highlight talks








## Integrated network biology

- Integration of different data sets becomes more and more important
- Biological networks to put genes or proteins in context





Wordle - ISMB2010 highlight talks

The components of a biological system do not act independently from each other, but are organized into functional modules (Hartwell et al., 1999)





#### DNA - Genome

- Promotor Analysis
- Gene Regulation
- CGH Data
- SNPs





#### DNA - Genome

- Promotor Analysis
- Gene Regulation
- CGH Data
- SNPs

#### Phenome

• Survival Analysis







#### DNA - Genome

- Promotor Analysis
- Gene Regulation
- CGH Data
- SNPs

#### Phenome

• Survival Analysis

#### RNA - Transcriptome

- Gene Expression
  - Microarrays
  - RNA-Seq
- Non-coding RNA





### DNA - Genome

- Promotor Analysis
- Gene Regulation
- CGH Data
- SNPs

#### Phenome

• Survival Analysis

#### RNA - Transcriptome

- Gene Expression
  - Microarrays
  - RNA-Seq
- Non-coding RNA

#### Proteins - Proteome

- Homology
- Function Prediction
- Protein-Protein-Interaction





### DNA - Genome

- Promotor Analysis
- Gene Regulation
- CGH Data
- SNPs

#### Phenome

• Survival Analysis

#### RNA - Transcriptome

- Gene Expression
  - Microarrays
  - RNA-Seq
- Non-coding RNA

#### Proteins - Proteome

- Homology
- Function Prediction
- Protein-Protein-Interaction





# **BioNet**



Integrate into protein-protein interaction network (HPRD):

- Gene expression data
- Survival data

o ...

To find coherent significant modules.





5 steps

BioNet - Functional analysis of biological networks Bioconductor Developer Meeting Europe

ъ





BIOZENTRUM

э

## Workflow

### 5 steps

Statistical tests





### 5 steps

- Statistical tests
- P-value aggregation





### 5 steps

- Statistical tests
- P-value aggregation
- Sit Beta-Uniform-Mixture (BUM) model



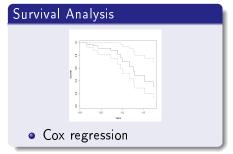


### 5 steps

- Statistical tests
- P-value aggregation
- Sit Beta-Uniform-Mixture (BUM) model
- Score nodes of the network






### 5 steps

- Statistical tests
- P-value aggregation
- Sit Beta-Uniform-Mixture (BUM) model
- Score nodes of the network
- Find maximum scoring subnetwork





## 1. Statistical tests



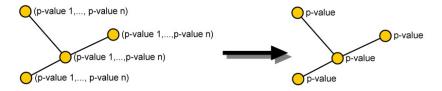
```
for(i in 1:dim(expdat[pat,])[2] {
  cox <- summary(coxph(as.formula(paste("sv ~ '",
      colnames(expdat[pat,])[i] ,"'", sep="")),
  data=expdat[pat,][i]))</pre>
```

```
survival.pvalues[i] <- cox$logtest[3] }</pre>
```

Microarray Analysis

```
    Standard t-test
```

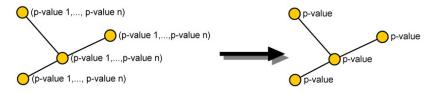
ttest.pvalues <- rowttests(exprLym, fac =
exprLym\$Subgroup)\$p.values</pre>


For each test: p-value per gene





3 x 3

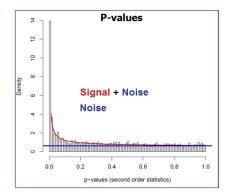

# 2. P-value aggregation







# 2. P-value aggregation




- P-values are uniformly distributed
- *i<sup>th</sup>* Uniform Order statistic of n p-values is Beta distributed
- Regard X(1) 
  ightarrow at least one significant p-value
- Regard  $X(n) \rightarrow all p$ -values significant

```
pvals <- cbind(ttest.pvalues, survival.pvalues)
pvalues <- aggrPvals(pvals, order=2, plot=F)</pre>
```

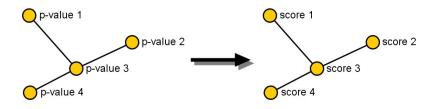


## 3. Fit Beta-Uniform-Mixture (BUM) model



$$f(x) = \lambda \,\, {\sf Noise}(x) + (1-\lambda) \,\, {\sf Signal}(x; {\sf a})$$

fb <- fitBumModel(pvalues, plot=TRUE)</pre>



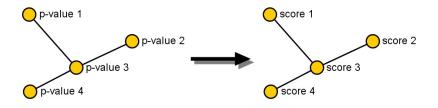



< ≣⇒

3

## 4. Score nodes of the network







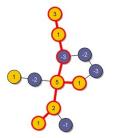

< ∃⇒

э.

## 4. Score nodes of the network



$$S(x) = \log \frac{Signal(x)}{Noise(x)} = \log \frac{Beta(a,1)(x)}{unif(0,1)(x)} = \log(a) + (a-1)\log(x)$$

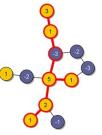

scores <- scoreNodes(network=net, fb=fb, fdr=0.001)</pre>





# 5. Find maximum scoring subnetwork

Positive Scoring Protein
 Negative Scoring Protein
 Largest Positive
 Scoring Subgraph
 Highest Scoring
 Subgraph








# 5. Find maximum scoring subnetwork

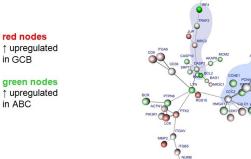




- $\bullet \ \mathsf{NP}\text{-hard} \to \mathsf{ILP}$
- Solution by combinatorial optimization using CPLEX library
- Detection of suboptimal solutions
- Heuristic approach

```
writeHeinzFiles(network=net, file="ex", node.scores=scores)
module <- readHeinzGraph(node.file="ex_n.txt.0.hnz", network=net)
module.heur <- runFastHeinz(network=net, scores=scores)</pre>
```




ANP324

DNTTIP:

SMAD2 SMADA

ME14

## Maximal-scoring subnetwork for DLBCL



#### plot3DModule(module)

**UNIVERSI** 

WÜRZBURG





## Acknowledgements

