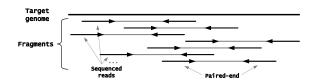
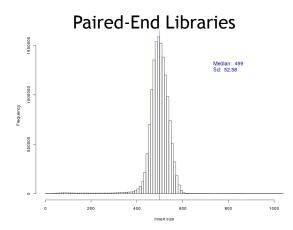
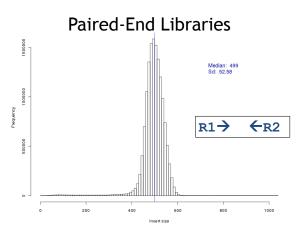
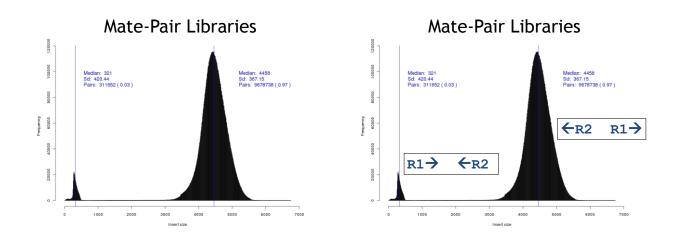

Sequencing

Short Read Alignment

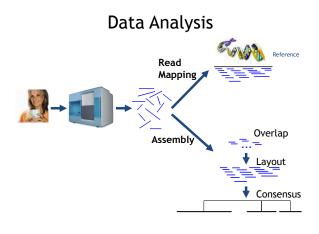

Tobias Rausch 7th June 2010



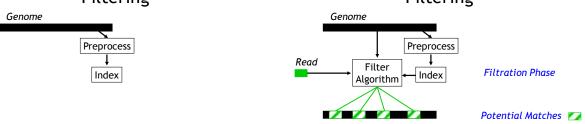

Sequencing

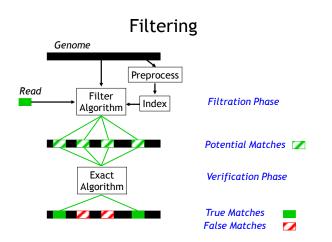


Paired-End Sequencing



Data Analysis


Assembly


- String Graph Assembler
 - Overlap Layout Consensus assemblers
 - Examples
 - Celera Assembler, Arachne, Atlas
- De-Bruijn Graph Assembler
 - Short-read assemblers
 - Examples:
 - Velvet, Abyss, SOAPdenovo
 - Transcriptome assembly: Oases

Simple k-mer Index, k=3

S = ACGAAAACTCGATTACTCGACC

	Hitlist		Hitlist		Hitlist
AAA		ACC		CGA	
AAC		ACG			
AAG		ACT		GAA	
AAT		AGA			
ACA				TTT	

• Size of that table: $4^3 = 64$ entries = $|\Sigma|^k$

Simple k-mer Index, k=3

S = ACGAAAACTCGATTACTCGACC

	Hitlist		Hitlist		Hitlist
AAA		ACC		CGA	
AAC		ACG	0		
AAG		ACT		GAA	
AAT		AGA			
ACA				TTT	

• Size of that table: $4^3 = 64$ entries = $|\Sigma|^k$

Simple k-mer Index, k=3

S = ACGAAAACTCGATTACTCGACC

	Hitlist		Hitlist		Hitlist
AAA		ACC		CGA	1
AAC		ACG	0		
AAG		ACT		GAA	
AAT		AGA			
ACA				TTT	

• Size of that table: $4^3 = 64$ entries = $|\Sigma|^k$

Simple k-mer Index, k=3

S = ACGAAAACTCGATTACTCGACC

	Hitlist		Hitlist		Hitlist
AAA		ACC		CGA	1
AAC		ACG	0		
AAG		ACT		GAA	2
AAT		AGA			
ACA				TTT	

• Size of that table: $4^3 = 64$ entries = $|\Sigma|^k$

Searching a Read

Hitlist

19

0

6,14

•••

Hitlist

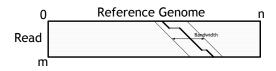
1

2

Empty

CGA

GAA


TTT

Simple k-mer Index, k=3

S = ACGAAAACTCGATTACTCGACC

	Hitlist		Hitlist		Hitlist
AAA	3,4	ACC	19	CGA	1
AAC	5	ACG	0		
AAG	Empty	ACT	6,14	GAA	2
AAT	Empty	AGA			
ACA	Empty			TTT	Empty

Verification Algorithm Banded Dynamic Programming

Read Sequence: ACTG

ACC

ACG

ACT

AGA

Hitlist

3,4

5

Empty

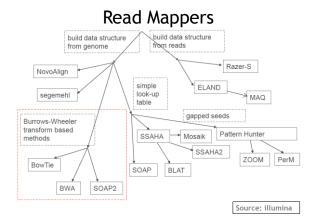
Empty

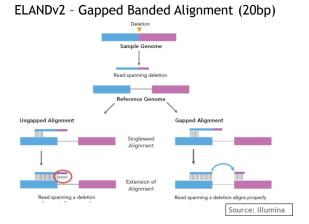
Empty

AAA

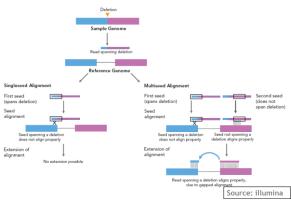
AAC

AAG


ΔΔΤ


ACA

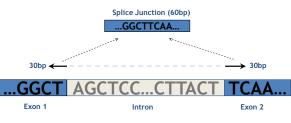
- Potential match at position 6 and 14


Techniques

- Index
 - Hash tables, k-mer Index
 - Suffix arrays
 - Burrows-Wheeler-Transformation (BWT) of a suffix array
- Filtering Algorithms
 - Single or multiple seeds
 - Pigeonhole principle
 - Q-gram filtering
- Verification
 - Simple seed-and-extend
 - Banded dynamic programming
 - Quality-based dynamic programming

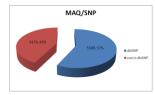
Parallelization

- Data Decomposition
 - Split the reads
 - Examples: Bowtie, Eland
- Functional Decomposition
 - Separate filtering and verification processes

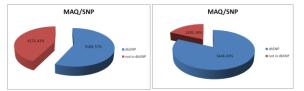

RNA-Seq Splice Site Genome Exon 1 Intron Exon 2 mRNA Transcript RNA Sequencing Reads Alignment to Genome Reads do not align Aligned properly Roberts

RNA-Seq

- Read-Mapping Protocol
 - Alignment against contaminants (rRNA)
 - Alignment against splice-junctions
 - Alignment against genome



- Read-Mapping Protocol
 - Alignment against contaminants (rRNA)
 - Alignment against splice-junctions
 - Alignment against genome


Calling SNPs

• Direct Alignment against hg18

Calling SNPs

• Direct Alignment against hg18

• Alignment against rRNA (1%) + Alignment against splice junctions (11%)

SAM/BAM

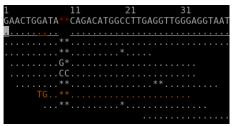
- Generic format for storing large nucleotide sequence alignments
- SAM Tools
 - Sorting alignments
 - Merging alignments
 - Indexing alignments
 - Viewing alignments

SAM record

Tab-delimited format

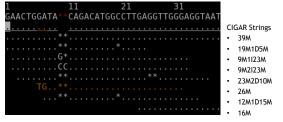
Field 1: Query name
Field 2: Flag
Field 3: Reference sequence name
Field 4: 1-based leftmost coordinate of the clipped sequence
Field 5: Mapping quality
Field 6: CIGAR strings
Field 7: Mate reference sequence name
Field 8: 1-based leftmost coordinate of the clipped sequence
Field 9: Insert size (5' to 5')
Field 10: Query sequence
Field 11: Sequence qualities

SAM record

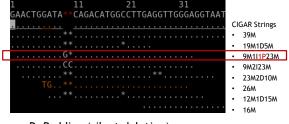

Tab-delimited format

Field 1: Query name
Field 2: Flag
Field 3: Reference sequence name
Field 4: 1-based leftmost coordinate of the clipped sequence
Field 5: Mapping quality
Field 5: CIGAR strings
Field 7: Mate reference sequence name
Field 8: 1-based leftmost coordinate of the clipped sequence
Field 9: Insert size (5' to 5')
Field 10: Query sequence
Field 11: Sequence qualities

Sam / Bam Format


1 GAACTGGATA**	11 •CAGACATGG		31 6664667447
GAACTGGATA			
GAACTGGATA** GAACTGGATA** AACTGGATAG*	CAGACATGG	*CTTGA	
AACTGGATAC	CAGACATGG	CCTTGAGGT1	GGGA
	*CAGACATGG	CCTTGAGGT1	GGG
ATA**	*CAGACATGG	*CTTGAGGT1 GAGGT1	TGGGAGG TGGGAGGTAAT

Sam / Bam Format


 Sequence characters agreeing with the reference are set to ". " or ", " for reads aligned to the forward or reverse strand.

Sam / Bam Format

- M: Alignment match or mismatch
- · I: Insertion to the reference
- D: Deletion from the reference

Sam / Bam Format

- P: Padding (silent deletion)
- · This is not even implemented by BWA
 - Because it would require a de novo local assembler!

Sam / Bam Format

- N: Skipped region from the reference - For spliced reads:
 - ACATGATA......GAGCTTTA (Cigar: 8M56N8M)
- Two more CIGAR characters
 - S: Soft clip on the read
 - H: Hard clip on the read

Flags

 $Bitwise \; FLAG: \quad \ \ f_{15}f_{14}f_{13}f_{12}f_{11}f_{10}f_{9}f_{8}f_{7}f_{6}f_{5}f_{4}f_{3}f_{2}f_{1}f_{0} \; \; with \; \; f_{i}\text{=} \{0,1\}$

- f_0 : 0 = Read is not paired in sequencing, 1 = Read is paired in seq.
- f_1 : 1 = The read is mapped in a proper pair
- f_2 : 1 = The query sequence itself is unmapped
- f₃: 1 = The mate is unmapped
- f_4 : 0 = forward strand, 1 = reverse strand

....