
BETTER MAPS OF DISEASE

NOT JUST WHAT BUT HOW

BUILDING A COMMONS FOR EVOLVING
GENERATIVE MODELS OF DISEASE



Existing approaches and issues

Cancer- 75% of drugs approved- ”standards of care”  lack significant impact

25,000 components with 3,269 associated with disease-yet only hundreds
targeted for therapies

Current costs for drug approval- ~$1Billion – 5 -10 years

~10% of therapies in Phase I trials will lead to approval

Several specific disease efforts spending ~ $1/3 Billion/year or more to develop
therapies







The value of appropriate representations
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• Generate data need to build
•  bionetworks
• Assemble other available data useful for building networks
• Integrate and build models
• Test predic;ons
• Develop treatments
• Design Predic;ve Markers

5 Year Program
Total Resources
 >$150M

The “Rose*a Integra1ve Genomics Experiment”: Genera1on, assembly,
and integra1on of data to build models that predict clinical outcome



trait

How is genomic data used to understand biology?

“Standard” GWAS Approaches Profiling Approaches

“Integrated” Genetics Approaches

Genome scale profiling provide correlates of
disease

 Many examples BUT what is cause and effect?

Identifies Causative DNA
Variation but provides NO

mechanism

  Provide unbiased view
of molecular physiology
as it relates to disease

phenotypes
 Insights on mechanism

  Provide causal
relationships and allows

predictions

RNA amplification
Microarray hybirdization

Gene Index
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Integration of Genotypic, Gene Expression & Trait Data

Causal Inference

Schadt et al. Nature Genetics 37: 710  (2005)
Millstein et al. BMC Genetics 10: 23 (2009)

Chen et al. Nature 452:429 (2008)
Zhang & Horvath. Stat.Appl.Genet.Mol.Biol. 4: article 17

(2005)

Zhu et al. Cytogenet Genome Res. 105:363 (2004)
Zhu et al. PLoS Comput. Biol. 3: e69 (2007)

“Global Coherent Datasets”
• population based

• 100s-1000s individuals



Causal Inference



Co-expression Networks

Co-expression/Association Networks
(does Gene A associate with Gene B?)

• Correlation-based associations
• Protein-protein interactions

• Literature-based associations
• Knowledge-based (KEGG, GO, etc.)

• DESCRIPTIVE: CAN NOT be used to predict outcomes or perturbations



Constructing Co-expression Networks

Start with expression measures for ~13K genes most variant genes across 100-150
samples

Note: NOT a gene
expression heatmap
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Establish a 2D correlation
matrix for all gene pairs

Define Threshold
eg >0.6 for edge

Clustered Connection Matrix

Hierarchically
cluster

sets of genes for which
many pairs interact
(relative to the total

number of pairs in that
set)

Network Module

Identify
modules



Bayesian Networks

Bayesian Networks
(does Gene A control Gene B?)

• Captures the stochastic nature of biological system
• Probability based

• Can include priors such as causality information
• PREDICTIVE: CAN be used to predict outcomes or perturbations



Constructing Bayesian Networks



Preliminary Probabalistic Models- Rosetta /Schadt

Gene symbol Gene name Variance of OFPM
explained by gene
expression*

Mouse
model

Source

Zfp90 Zinc finger protein 90 68% tg Constructed using BAC transgenics

Gas7 Growth arrest specific 7 68% tg Constructed using BAC transgenics

Gpx3 Glutathione peroxidase 3 61% tg Provided by Prof. Oleg
Mirochnitchenko (University of
Medicine and Dentistry at New
Jersey, NJ) [12]

Lactb  Lactamase beta 52% tg Constructed using BAC transgenics

Me1 Malic enzyme 1 52% ko Naturally occurring KO

Gyk Glycerol kinase 46% ko Provided by Dr. Katrina Dipple
(UCLA) [13]

Lpl Lipoprotein lipase 46% ko Provided by Dr. Ira Goldberg
(Columbia University, NY) [11]

C3ar1 Complement component
3a receptor 1

46% ko Purchased from Deltagen, CA

Tgfbr2 Transforming growth
factor beta receptor 2

39% ko Purchased from Deltagen, CA

Networks facilitate direct
identification of genes that are

causal for disease
Evolutionarily tolerated weak spots

Nat Genet (2005) 205:370



"Genetics of gene expression surveyed in maize, mouse and man." Nature. (2003)
"Variations in DNA elucidate molecular networks that cause disease." Nature. (2008)
"Genetics of gene expression and its effect on disease." Nature. (2008)
"Validation of candidate causal genes for obesity that affect..." Nat Genet. (2009)
….. Plus  10 additional papers in Genome Research, PLoS Genetics, PLoS Comp.Biology,  etc

"Identification of pathways for atherosclerosis." Circ Res. (2007) 
"Mapping the genetic architecture of gene expression in human liver." PLoS Biol. (2008) 

…… Plus  5 additional papers in Genome Res., Genomics, Mamm.Genome

"Integrating genotypic and expression data …for bone traits…" Nat Genet. (2005) 
“..approach to identify candidate genes regulating BMD…" J Bone Miner Res. (2009) 

"An integrative genomics approach to infer causal associations ...” Nat Genet. (2005)
"Increasing the power to detect causal associations… “PLoS Comput Biol. (2007)
 

"Integrating large-scale functional genomic data ..." Nat Genet. (2008) 
…… Plus 3 additional papers in PLoS Genet., BMC Genet.

d

Metabolic 
Disease

CVD

Bone

Methods

Extensive Publications now Substantiating Scientific Approach
Probabilistic Causal Bionetwork Models

• >60 Publications from Rosetta Genetics Group (~30 scientists) over 5 years
including high profile papers in PLoS Nature and Nature Genetics



details at:
http://sagebase.org/research/publications.html 



• #1 ‐ Connect associated SNP to true gene underlying mechanism via Gene;cs of Gene Expression
– Workflow - Start with a GWAS or other association between DNA variation and a clinical phenotype, need to understand

what genes and ultimately mechanism underlie that association.  Here we use our human eSNPs, SNP-set-enrichment,
mouse causal genes, and similarities between human and mouse networks to determine plausible genes and network
neighborhoods through which the information encoded in that DNA variation manifests as phenotype.

• #2 ‐ Iden;fy new targets and progress through valida;on as disease genes toward pharmacologic valida;on
– Workflow – Predic1ng genes that contribute to disease phenotypes using causality and network modeling.

Mul1ple examples that validate based on a single‐gene interven1on in a model system, and ul1mately
progresses toward in vivo pharmacology.

• #3 ‐ Reposi;on a drug
– Workflow ‐ Really a special case of the new target iden1fica1on, where the workflow starts with a number of

targets for which good, "safe" compounds exist, and then we apply all the standard approaches we have to
validate the target and test the compound for an indica1on in preclinical species or humans

• #4 ‐ Kill a compound with confidence that opportuni;es to segment the target popula;on were fully explored.
– Workflow  ‐ Take Phase II or III trial where efficacy is not seeming strong, or where adverse experiences

appear mechanism‐based.  Then use gene1cs in the trial + the network approaches outlined in case #1 above
to demonstrate that a significant segment of the popula1on for which the drug would have substan1al net
benefit is unlikely to exist.

• #5 ‐ Define clinically relevant subpopula;ons
– Workflow ‐ Similar to #4 above, but typically star1ng at an earlier stage to incorporate hypotheses about

popula1on segments early enough in the development process that they are easily tested prospec1vely.

• #6 ‐ Avoid liability
– Workflow ‐ Apply a pipeline of standard checks to expression profiling from knockout, siRNA, and compound

treatments for a target that encompasses mapping the expression signatures to all relevant 1ssue networks,
looking to see what annota1ons and other gene expression signatures map to the modules where those
interven1on signatures map, and following up any leads.



Two approaches to match a “safe” compound to a phenotype

Approach 1: Search network maps that causally link targets to
phenotypes for both mouse and human

Approach 2: Map compound signatures to networks that are linked to
phenotypes for both mouse and human

 #3 Repositioning Strategy

Drug Phenotype
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Top scoring genes



Approach 3.1: Link Drug/Target data to Target/Trait data

Drug Target Gene Trait

Atherosclerosis

Obesity

Public and/or 
Pharma Proprietary Data

Links drugs to targets

Sage Data
Links genes to traits
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• ~35% reduction in body weight gain (vs vehicle).
• also reductions in Leptin & insulin in DIO model.

Preclinical Pharmacologic Validation of Drug Z

Drug developed for another indication showing evidence for association to
obesity traits in mouse F2 crosses and being validated pharmacologically in

preclinical model of HFD feeding



db/db mouse
(p~10E(-30))

AVANDIA in db/db mouse

= up regulated
= down regulated

Ability to integrate compound data into our network analyses

db/db mouse
(p~10E(-20)
 p~10E(-100))



Impact on Merck Pipeline

“The investment has paid off for us.” 
‐‐Peter Kim, president of Merck Research Laboratory

‘The company now has in clinical trials eight drugs that emerged out of
Rose*a’s plaZorm, Dr. Kim said, with more than a dozen others in
preclinical trials. He declined to provide specifics about the costs of
the candidate drugs. ‘

‘Dr. Kim said that Merck was developing some cancer drugs that
would be directed at various subpopula1ons of pa1ents rather than
the one‐size‐fits‐all approach that has been a hallmark of modern
pharmaceu1cal companies. “We’re going to target specific
networks and pathways,” he said. ‘

NY Times, August 25, 2009



Integration of
transcriptional interactions

with causal or functional
links

Network based study of
disease

Pathway assembly via
integration of networks

Network evolutionary
comparison / cross-
species alignment to
identify conserved

modules

Projection of molecular
profiles on protein

networks to reveal active
modules

Alignment of physical and
genetic networks

Identification of networks
associated with cancer

progression

Network-based cancer
diagnosis / prognosis

Moving from genome-wide
association studies

(GWAS) to network-wide
“pathway” association

(NWAS)

Ideker: Assembling Networks for Use in Clinic

The Working Map



The transcriptional network for mesenchymal transformation
of brain tumours

Maria Stella Carro1*{, Wei Keat Lim2,3*{, Mariano Javier Alvarez3,4*, Robert J. Bollo8, Xudong
Zhao1, Evan Y. Snyder9, Erik P. Sulman10, Sandrine L. Anne1{, Fiona Doetsch5, Howard
Colman11, Anna Lasorella1,5,6, Ken Aldape12, Andrea Califano1,2,3,4 & Antonio Iavarone1,5,7

NATURE 463:318, 21 JANUARY 2010



Atul Butte Stanford
Exploring the Global Landscape of Human Disease Through Public Data

CommonalitiesDifferences

Public data
enables

quantitative
disease

relationships

High quality
signals exist
in public data

Genetic architecture
of autoimmune

diseases

Plasma proteome
networks

Functional gene
module networks

Which
biomarkers best

discriminate
diseases?

Is there a
blood

biomarker for
general

pathology?

Are there
genetic

“switches”
for

autoimmunity
?

Do common
modules
harbor

pluripotent
drug targets?

Which modules
are unique to

metabolic
diseases?

Is there a
common

autoimmune
susceptibility

variant?

Joel Dudley et al.. Molecular systems
biology (2009) vol. 5 pp. 307

Silpa Suthram et al. PLoS
computational biology (2010) vol. 6 (2)

pp. e1000662

Joel Dudley and
Atul Butte. Pacific

Symposium on
Biocomputing

(2009) pp. 27-38

Marina Sirota et
al. PLoS genetics
(2009) vol. 5 (12)

pp. e1000792

Silpa Suthram et
al. PLoS

computational
biology (2010)
vol. 6 (2) pp.

e1000662
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The stunning technologies coming will generate heaps of genomic
data poised to

Bionetworks using integrative genomic approaches can highlight the
non-redundant components- can find drivers of the disease and
of therapies

Need to develop ways to host massive amounts of data, evolving
representations of disease as represented by these probabilistic
causal disease models



Recognition that the benefits of bionetwork based molecular
models of diseases are powerful but that they require
significant resources

Appreciation that it will require decades of evolving
representations as real complexity emerges and needs to be
integrated with therapeutic interventions

Realizing the donation by Merck might seed a “commons”
allowing a potential long term gain to the whole community
provided by evolving models  of disease built via a
contributor network



Sage Mission

Sage Bionetworks is a non-profit organization with a vision to
create a “commons” where integrative bionetworks are evolved by

contributor scientists with a shared vision to accelerate the
elimination of human disease

34



Sage Bionetworks



Sage Bionetworks



Sage Bionetworks
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Example 1: Identification of Molecular Drivers of Breast Cancer

4 Published Breast Cancer Gene Expression
Studies

Combine

Bayesian Network

Co-expression Network

Bayesian Sub-network
with Global Drivers

(yellow)



Co-expression sub-networks predict survival

Prognostic power of the gene modules in the
NKI gene co-expression network. Module

prognostic power was defined as -log(Cox p-
value) from a multi-variate Cox proportional

hazards regression model that regresses
patient survival onto the principal components

of a given module

NKI Co-expression network



Network Properties can be used to predict key drivers

NKI Co-expression network For a given BN, let µ be the numbers of N-
hub downstream nodes and d be the
outdegrees for all the genes. Genes with the
number of N-hub downstream nodes greater
than mean (µ) + sd (µ) are nominated as
regulators.



Drivers from Network are More likely to have Survival Effect in
siRNA Screens



Key Drivers
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Application II: Alzheimer’s Disease

 Cross-tissue coexpression networks
for both normal and AD brains
• prefrontal cortex, cerebellum,

visual cortex
 Differential network analysis on AD

and normal networks
 Integrate coexpression networks

and Bayesian networks to identify
key regulators for the modules
associated with AD

subset samples

Alzh_PFC 310

Alzh_CR 263

Alzh_VC 190

Norm_PFC 153

Norm_CR 128

Norm_VC 121

43



nerve ensheathment

Glutathione transferase

extracellular matrix

Gain connectivity by 91 fold

Lose connectivity by 40%

Gain connectivity by 1.9 fold

Module Connectivity Change (AD/Normal)

Identification of Disease (AD) Pathways via
Comparative Gene Network Analysis

40,000 genes from three tissues

Bayesian Subnetworks

  Control
(PFC, CB, VC)

        AD
(PFC, CB, VC)
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45 45

Differentially Connected Modules in AD

•Unfolded protein response (UPR)
•AKT  HIF1  VEGF

•Olfactory receptor activity
•Sensory perception of smell chemical stimulus

•Inflammatory Response

•Extra cellular matrix (ECM)

•Synaptic transmission (suppressed)

•Nerve ensheathment

45



Key Regulators
pink hits red hits tan hits

PECAM1.VC 70 ENPP2.PFC 296 SLC22A2.PFC 238

XM_211501.VC 62 PLLP.PFC 135 OGN.PFC 120

GON4L.VC 52 PLP1.PFC 133 KIAA1199.PFC 83

GNPTAB.VC 45 FRYL.PFC 129 AK021858.PFC 77

GSTA4.VC 45 SLC44A1.PFC 129 Contig39710_RC.PFC 66

hCT24928.VC 41 Contig43380_RC.PFC 125 SPTLC2L.PFC 64

RAB2.VC 41 PLEKHH1.PFC 123 COL6A3.PFC 62

HIST1H2BA.VC 38 UGT8.PFC 118 PTGDR.PFC 54

ENST00000283038.VC 35 AL137342.PFC 112 XM_068880.PFC 48

hCT1959721.VC 35 TTYH2.PFC 87 NM_018242.PFC 47

OR6S1.VC 31 PSEN1.PFC 73 SVIL.PFC 47

DOCK6.VC 30 TRIM59.PFC 73 CLIC6.PFC 43

ENST00000293571.VC 28 FA2H.PFC 69 OLFML2A.PFC 31

OR12D3.VC 28 KIAA1189.PFC 61 MYH11.PFC 27

AK055724.VC 27 CREB5.PFC 59 MRC2.PFC 26

Contig33276_RC.VC 25 AB037815.PFC 57 Contig16712_RC.PFC 25

hCT1658538.VC 25 MAP7.PFC 46 WNT6.PFC 25

ABCC2.VC 23 ABCA2.PFC 41 C1S.PFC 21

AK057434.VC 19 NM_014711.PFC 41 DAB2.PFC 20

hCT1660876.VC 17 NM_175922.PFC 39 PCOLCE.PFC 20

MYOHD1.VC 17 FRMD4B.PFC 38 SLPI.PFC 19

hCT1644335.VC 16 RTKN.PFC 36 Contig47865.PFC 17

HSS00083045.VC 16 NM_144595.PFC 35 FCGR2B.PFC 15

PIGV.VC 16 FOLH1.PFC 34 TBX15.PFC 14

RAC3.PFC 16 SEPT4.PFC 32 COL3A1.PFC 12

WDR23.PFC 16 LAMP2.PFC 31 SCARA5.PFC 12

PECAM1: Platelet-endothelial
cell adhesion molecule, a

tyrosine phosphatase activator
that plays a role in the platelet

activation, increased expression
correlates with MS, Crohn

disease, chronic B-cell
leukemia, rheumatoid arthritis,

and ulcerative colitis

ENPP2: Phosphodiesterase I
alpha, a lysophospholipase that
acts in chemotaxis, phosphatidic

acid biosynthesis, regulates
apoptosis and PKB signaling;

aberrant expression is
associated with Alzheimer type

dementia, major depressive
disorder, and various cancers

SLC22A25: solute carrier family
22, member 25, Protein with

high similarity to mouse
Slc22a19, which is a renal

steroid sulfate transporter that
plays a role in the uptake of

estrone sulfate, member of the
sugar (and other) transporter
family and the major facilitator

superfamilyGlutathione Transferase Module (Pink)

• 983 probes from all three brain regions (9% from CB, 15% from PFC and 76% from VC)
• Most predic1ve of Braak severity score

GlutathioneTransferase  NerveEnsheathment   ExtracellularMatrix
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Sage Bionetworks



Global Coherent Data Sets

A data set containing genome-wide DNA variation and
intermediate trait, as well as physiological phenotype data across
a population of individuals large enough to power association or
linkage studies, typically 50 or more individuals. To be coherent,
the data needs to be matched with consistent identifiers.
Intermediate traits are typically gene expression, but may also
include proteomic, metabolomic, and other molecular data.

GCDs are current state of knowledge and subject to change as more information becomes available to
Sage



Sage Data Sets – Available/In transition



Sage Data Sets –  Requires Release

MGED



Sage Data Sets –  In Progress



Types of Network Models available in Sage Repository

Dataset Clinical Genotype Expression Copy Number
Varia;ons

Networks

Human Cancer Breast
BCCA

No No No No Bayesian and Coexpression

Mouse CVD Adipose,
Liver, Brain, Muscle
UCLA

Yes Yes Yes No Bayesian and Coexpression

Human CVD Liver
Vanderbilt/
Pi*sburg/StJudes

Yes dbGaP Yes No Bayesian and Coexpression

Differen1a1ng ES cell
regula1on

No No No No Interac1on

Human B‐Cell
Interactome

No No No No Interac1on

Human Cancer HCC
HKU

Yes No Yes No Bayesian and Coexpression

Human Cancer
Glioblastoma TCGA

No No No No Bayesian and Coexpression

Yeast Gene1c
Interac1on Map

No No No No Interac1on



Sage Tools- Download Page for Repository

http://www.sagebase.org/research/tools.html



Bioconductor at Sage

 Bioconductor standard part of data QC SOP
 Use Biobase and affy to read and store data
 Use same for normalization and transformation
 Use genefilter for subset selection

 Use Bioconductor for mouse data analysis
 Use qtl package for analysis of F2 mouse cross
 Use custom scripts for report plots and figures



New Packages at Sage- Dave Henderson

 Causal Inference Test

 R package under development at Sage

 Performs a test for causal inference developed by Joshua Millstein

 Key Driver

 R package under development at Sage

 Identifies key nodes within a graph given a query set of nodes

 Sage Data Sets

 Contains the publicly available data sets from Sage

 Data in native Bioconductor objects

 GraphSet object under development with Bioconductor group in Seattle



NOT JUST WHAT BUT HOW



data mining
“my data’s mine, and your data’s mine”

attribution: carole goble- sidney brenner



this must be accessible and be integrated.
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Open Access Use in Physics

Gentil-Beccot, Anne; Salvatore Mele, Travis Brooks (2009) Citing and Reading
Behaviours in High-Energy Physics: How a Community Stopped Worrying about
Journals and Learned to Love RepositoriesThis is an important study, and most of
its conclusions are valid:

(1) Making research papers open access (OA) dramatically increases their impact

(2) .(2) The earlier that papers are made OA, the greater their impact

(3) .(3) High Energy Physics (HEP) researchers were among the first to make their
papers OA (since 1991, and they did it without needing to be mandated to do it!)





SGC-Increasing accessibility of
Structural Biology data

• Oct 09: Collaborate with PLoS ONE to
produce PLoS ONE collection

• Aimed at non-structural biologists
• Peer reviewed
• Published in a novel electronic annotated

format, incorporate 3D visualisation
– Use MolSoft LLC activeICM technology



Impact of “no IP”
• Collaborate quickly with any scientist, lab or

institution

• Work closely with multiple private organisations,
on same project

• Generate data quickly

• Place data in public domain quickly



40% of all kinase structures,
solved by SGC (in past 4 years)



BUILDING A COMMONS FOR EVOLVING
GENERATIVE MODELS OF DISEASE



sharing as an adoption of common standards..
Clinical   Genomics  Privacy   IP





 Sage Commons Congress

San Francisco

April 23-24 2010

Josh Sommer: Interlab and Intralab Communication



EXTENDING STANDARD AGREEMENTS FOR DATA SHARING-
FUNDERS AND PUBLISHERS

All data suppor1ng the publica1on shall be made available for download from a digital repository
under terms and condi1ons no more restric1ve than the Science Commons Protocol for
Implemen1ng Open Access Data {h*p://sciencecommons.org/projects/publishing/open‐access‐
data‐protocol/},
 upon:

a)    six (6) months auer any publica1on describing the results of the funded research project;
b)     twelve (12) months auer the comple1on of the research project; or
c)     twelve (12) months auer the expira1on or termina1on of the Grant

 Agreement,whichever is earliest, and subject to any reasonable delay necessary to evaluate for
patentability and to file any patent applica1ons. Grantee may comply with the above
requirement either by: Deposi1ng a copy of the data in a third party digital repository from
which it may be downloaded free of charge, or Offer such data for download on a Website
without charge, or Offer to distribute such data on any medium which is commonly used,
subject to a reasonable charge for the cost of reproduc1on and distribu1on. Deposit of
Unpublished Data

Grantee shall deposit a copy of all data created in the course of the funded research project in
Grantor’s data repository no later than six (6) months from the date of crea1on. The data so
deposited shall be used by Grantor only for its own internal quality analysis and shall not be
published by Grantor, un1l such data otherwise becomes publicly available.



How to Host Network Models

Sage Bionetworks is working on a major
agreement with a major Publisher



Opportunities to Leverage Existing Efforts

Bioconductor

 caBIG

Cytoscape

Genome Space

Wikipathways



BETTER MAPS OF DISEASE

NOT JUST WHAT BUT HOW

BUILDING A COMMONS FOR EVOLVING
GENERATIVE MODELS OF DISEASE



Current big science efforts to interpret the biology thru DNA changes, RNA changes, proteomic changes
layered on existing signal and metabolic pathways represent fragmented approaches

The stunning technologies coming will generate heaps of data that is expanding faster than we can process it.

Current biomedical approaches to developing therapies starting from RO1 driven academic labs to

       existing pharma/biotechs collecting siloed insights driving existing clinical approvals are unsustainable

Emerging efforts to build bionetworks using integrative genomic approaches can highlight the selected
components in diseases that are non-redundant, (minimal redundancy) and therefore if changes can
produce be drivers of the disease and drivers of therapies

We will need to develop ways to host massive amounts of data, evolving representations of disease as
represented by these probabilistic causal disease models

We will need to learn how to share data, and models and fundamental change how we fund and reward
science- head towards a more contributor distributed world

The patient and their disease foundations will be at the center of this world where disease biology will exist in
pre-competitive space surrounded by IT partners, knowledge experts NIH, pharma, insurers, diagnostic
companies


