
BioC 2010 Automated Gating and Metaclustering
for Flow Cytometry Data

Greg Finak

Computational Biology Unit.
Gottardo Laboratory

IRCM, Montreal, Canada

July 29, 2010

Goals

Purpose of the workshop

I Learn how to use flowClust and flowMerge effectively for
automated gating.

I Understand the effects of flowClust parameters on gating.

I Learn to metacluster discovered cell populations.

Software Requirements

Software you should have installed

I R 2.11.1

I Bioconductor 2.6.0

I flowMerge 1.3.7

I flowClust 2.7.0

I snowfall

I flowViz

I flowStats

I fpc

If you’re missing the development versions of flowClust or
flowMerge, there is a hard drive being passed around that has the
development versions of flowClust and flowMerge.

Goals

After working through these examples you should be able to:

I Run flowClust and flowMerge in a fully automated manner

I Run flowClust and flowMerge in a semi-automated manner

I Run flowClust model fitting in parallel using snow and
snowfall packages

I Understand the role of different model parameters and how
changing them impacts gated cell pouplations

I Be able to manipulate and evaluate flowClust and flowMerge

model objects in R

I Perform metaclustering of cell populations across samples
using flowMetaCluster

Overview

Why Automated Gating with BioConductor?

I Manual gating has drawbacks for large data sets.

I Analysis using BioConductor can be automated

I Customizable

Data Set

Analysis Overview

Analysis of a data set comparing two drug treatment protocols.
Goal is gating and measuring the fraction of T–helper and cytotoxic
T–cells expressing HLADr activation marker. We’ll use different
tools, including flowClust, flowMerge and gating functionality
from flowCore to walk through the analysis of this data.

Preliminaries

Loading Required Libraries

BioConductor is modular. Different functionality comes from
different user–supplied packages. To utilize the functionality
provided by a given package, the package must be loaded.

require(flowMerge)

require(flowViz)

require(flowQ)

require(flowStats)

require(snowfall)

require(fpc)

require(flowTrack)

Loading Data

Reading into a flowSet:

To load the data we run:

file.loc <- system.file("extdata",

package = "flowTrack")

data <- read.flowSet(path = file.loc,

pattern = "fcs", phenoData = "annotation.txt",

transformation = FALSE)

Inspecting Data

We can get additional information about the flowSet by entering the name
of the flowSet at the R command line:

data

A flowSet with 14 experiments.

An object of class "AnnotatedDataFrame"
rowNames: 01126211_NB8_I025.fcs, 01247181
_NB06_I025.fcs, ..., 12015151_NB8_I025.fc
s (14 total)
varLabels and varMetadata description:
PatientID:
GroupID:
...: ...
name: Filename
(6 total)

column names:
FSC-A SSC-A FITC-A PE-A FL3-A PE-Cy7-A APC-A Time

We see it is composed of 14 sample (experiments), and we see
some additional information about the AnnotatedDataFrame
associated with the flowSet (we see file names, and that there are
6 pieces of metadata assocaited with each sample).

Inspecting Data

Similarly, by calling:

data[[1]]

flowFrame object '01126211_NB8_I025.fcs'
with 4000 cells and 8 observables:

name desc range minRange
$P1 FSC-A <NA> 1024 0
$P2 SSC-A <NA> 1024 0
$P3 FITC-A CD8 FITC-A 1024 1
$P4 PE-A CD69 PE-A 1024 1
$P5 FL3-A CD4 1024 1
$P6 PE-Cy7-A CD3 PE-Cy7-A 1024 1
$P7 APC-A HLADr APC-A 1024 1
$P8 Time <NA> 1024 0

maxRange
$P1 1023
$P2 1023
$P3 1023
$P4 1023
$P5 1023
$P6 1023
$P7 1023
$P8 1023
98 keywords are stored in the 'description' slot

we get some additional information about the first flowFrame. We see it has
4000 events and 8 channels. It is named using its associated FCS file name.
The channels are named by their associated dye (”names” column). The
assocaited markers are in the ”desc” column.

Inspecting the Data

If we examine the default sample and marker names associated with the
flowSet, we see that they are not very informative:

colnames(data)

[1] "FSC-A" "SSC-A" "FITC-A"
[4] "PE-A" "FL3-A" "PE-Cy7-A"
[7] "APC-A" "Time"

sampleNames(data)

[1] "01126211_NB8_I025.fcs"
[2] "01247181_NB06_I025.fcs"
[3] "02276161_NB8_I025.fcs"
[4] "03157141_NB06_I025.fcs"
[5] "05107251_NB06_I025.fcs"
[6] "06226101_NB8_I025.fcs"
[7] "07115141_NB8_I025.fcs"
[8] "07215281_NB8_I025.fcs"
[9] "08045071_NB8_I025.fcs"
[10] "09225121_NB8_I025.fcs"
[11] "10175181_NB8_I025.fcs"
[12] "10276181_NB8_I025.fcs"
[13] "11145351_NB8_I025.fcs"
[14] "12015151_NB8_I025.fcs"

The default sample and channel names appear on any generated plots and
graphics. We want to assign the more informative "PatientID" from the
annotation metadata as sample names:

We can view the metadata via:

PatientID GroupID
01126211_NB8_I025.fcs pid349 DRUG A
01247181_NB06_I025.fcs pid300 DRUG B
02276161_NB8_I025.fcs pid778 DRUG A
03157141_NB06_I025.fcs pid291 DRUG B
05107251_NB06_I025.fcs pid214 DRUG A
06226101_NB8_I025.fcs pid867 DRUG B
07115141_NB8_I025.fcs pid877 DRUG B
07215281_NB8_I025.fcs pid409 DRUG A
08045071_NB8_I025.fcs pid993 DRUG B
09225121_NB8_I025.fcs pid847 DRUG A
10175181_NB8_I025.fcs pid244 DRUG B
10276181_NB8_I025.fcs pid149 DRUG B
11145351_NB8_I025.fcs pid225 DRUG A
12015151_NB8_I025.fcs pid333 DRUG A

Technician Project
01126211_NB8_I025.fcs Jill BIOC2009
01247181_NB06_I025.fcs Jill BIOC2009

02276161_NB8_I025.fcs Jill BIOC2009
03157141_NB06_I025.fcs Peter BIOC2009
05107251_NB06_I025.fcs Peter BIOC2009
06226101_NB8_I025.fcs Jill BIOC2009
07115141_NB8_I025.fcs Jill BIOC2009
07215281_NB8_I025.fcs Jill BIOC2009
08045071_NB8_I025.fcs Jill BIOC2009
09225121_NB8_I025.fcs Mark BIOC2009
10175181_NB8_I025.fcs Mark BIOC2009
10276181_NB8_I025.fcs Mark BIOC2009
11145351_NB8_I025.fcs Mark BIOC2009
12015151_NB8_I025.fcs Mark BIOC2009

Stain
01126211_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
01247181_NB06_I025.fcs CD8/CD69/CD4/CD3/HLADR
02276161_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
03157141_NB06_I025.fcs CD8/CD69/CD4/CD3/HLADR
05107251_NB06_I025.fcs CD8/CD69/CD4/CD3/HLADR
06226101_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR

07115141_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
07215281_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
08045071_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
09225121_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
10175181_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
10276181_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
11145351_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR
12015151_NB8_I025.fcs CD8/CD69/CD4/CD3/HLADR

name
01126211_NB8_I025.fcs 01126211_NB8_I025.fcs
01247181_NB06_I025.fcs 01247181_NB06_I025.fcs
02276161_NB8_I025.fcs 02276161_NB8_I025.fcs
03157141_NB06_I025.fcs 03157141_NB06_I025.fcs
05107251_NB06_I025.fcs 05107251_NB06_I025.fcs
06226101_NB8_I025.fcs 06226101_NB8_I025.fcs
07115141_NB8_I025.fcs 07115141_NB8_I025.fcs
07215281_NB8_I025.fcs 07215281_NB8_I025.fcs
08045071_NB8_I025.fcs 08045071_NB8_I025.fcs
09225121_NB8_I025.fcs 09225121_NB8_I025.fcs

10175181_NB8_I025.fcs 10175181_NB8_I025.fcs
10276181_NB8_I025.fcs 10276181_NB8_I025.fcs
11145351_NB8_I025.fcs 11145351_NB8_I025.fcs
12015151_NB8_I025.fcs 12015151_NB8_I025.fcs

Preparing the Data

Renaming Samples

The following code assigns the "PatientID" columns as the sample
names:

sampleNames(data) <- as.character(pData(data)[,

"PatientID"])

Renaming Channels

In order to use the more informative marker names as the channel
names, rather than the names of the dyes, we run the following:

for (i in seq_len(length(data))) {

pData(parameters(data[[i]]))[,

"desc"] <- c("NA", "NA",

"CD8", "CD69", "CD4", "CD3",

"HLADr", "NA")

}

colnames(data) <- c("FSC", "SSC",

"CD8", "CD69", "CD4", "CD3",

"HLADr", "Time")

Transformation and Preprocessing

Before Transformation - 1D Density Plots

densityplot(~., data)

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0 200 600 1000

FSC

0 200 600 1000

SSC

0 200 600 1000

CD8

0 200 600 1000

CD69

0 200 600 1000

CD4

0 200 600 1000

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

CD3

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0 200 600 1000

HLADr

I Forward and side scatter
cover the range of data.

I Fluorescence channels
need to be transformed.

I Many to choose from in
flowCore

Data Transformation

Logicle Transform

We’ll use the logicle transformation from flowCore to transform the
fluorescence channels.

tData <- transform(data, transformList(colnames(data)[3:7],

logicleTransform()))

I transformList() constructs a list of channels and transformation
functions.

I transform() applies the transformation list to data.

Data Transformation
Data after transformation
We can now plot the transformed data for comparison.

densityplot(~., tData)

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0 200 600 1000

FSC

0 200 600 1000

SSC

0.0 0.5 1.0 1.5 2.0

CD8

0.0 0.5 1.0 1.5 2.0

CD69

0.0 0.5 1.0 1.5 2.0

CD4

0.0 0.5 1.0 1.5 2.0

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

CD3

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0.0 0.5 1.0 1.5 2.0

HLADr

Looking at the CD3 and CD4 dimensions we can see that the different
populations are readily visible.

All Channels Scatterplot
splom(tData[[2]][, c(1, 2, 3, 5,

6, 7)], smooth = TRUE)

Scatter Plot Matrix

FSC

SSC

CD8

CD4

CD3

HLADr

I Different populations are resolved in different channels following transformation.
I Need to remove boundary events in FSC and SSC (details in the handout).

tData.f <- Subset(tData, filter(tData,

boundaryFilter(c("FSC", "SSC"))))

The above code constructs a boundary filter object via
boundaryFilter(), taking the names of the channels to be filtered.
Next, via filter() the filtering operation is performed on tData.
Finally, the filtered data are extracted into a new flowFrame object
via Subset(). Let’s visualize some of the filtered data:

splom(tData.f[[2]][, c(1, 2, 3, 5,

6, 7)], smooth = TRUE)

Scatter Plot Matrix

FSC

SSC

CD8

CD4

CD3

HLADr

Normalization

We’ll normalize the fluorescence channels so that populations are lined up at the same
intensities across replicates. Details on normalization are in the flowSet package.

tData.n <- normalize(tData.f, normalization(parameters = colnames(tData.f)[3:7],

normFun = function(x, parameters,

...) warpSet(x, parameters,

...)))

Estimating landmarks for channel CD8 ...
Estimating landmarks for channel CD69 ...
Estimating landmarks for channel CD4 ...
Estimating landmarks for channel CD3 ...
Estimating landmarks for channel HLADr ...
Registering curves for parameter CD8 ...
Registering curves for parameter CD69 ...
Registering curves for parameter CD4 ...
Registering curves for parameter CD3 ...
Registering curves for parameter HLADr ...

Normalization
Plot Normalized Data
Let’s plot the normalized data, just to check.

densityplot(~., tData.n)

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0 200 600 1000

FSC

0 200 600 1000

SSC

0 1 2 3

CD8

0 1 2 3

CD69

0.0 0.5 1.0 1.5 2.0 2.5

CD4

0 1 2 3

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

CD3

pid149pid214pid225pid244pid291pid300pid333pid349pid409pid778pid847pid867pid877pid993

0 1 2 3

HLADr

With the preprocessing completed, we move on to automated gating with
flowClust and flowMerge.

Gating Strategy

Target Population

Fraction of CD3+/CD4+ and CD3+/CD8+ T-cells that express
activation marker HLADr following treatment with two different
drugs.

Options

I All–at–once gating (scatter + fluorescence dimensions)

I Sequential gating: scatter channels first, followed by
fluorescence channels.

I Gaussian vs t-mixture models.

I With and without transformation.

We’ll begin by comparing sequential vs all–at–once gating.

Since this may take some time to compute, you can load
pre–computed data with:

Sequential vs All–at-Once Gating

Compare Different Parameterization Options in flowClust

Note: these results can be loaded with:

data(flowMerge1)

We’ll look at just the first sample for now. Compare sequential vs
all–at–once gating, with and without transformation..

fc.all <- flowClust(tData.n[[1]],

K = 1:10, varNames = colnames(tData.n[[1]])[1:7],

trans = 1, nu = 4, nu.est = 1)

fc.all.notrans <- flowClust(tData.n[[1]],

K = 1:10, varNames = colnames(tData.n[[1]])[1:7],

trans = 0, nu = 4, nu.est = 1)

fc.sequential <- flowClust(tData.n[[1]],

K = 1:10, varNames = colnames(tData.n[[1]])[c(1,

2)], trans = 1, nu = 4,

nu.est = 1)

fc.sequential.notrans <- flowClust(tData.n[[1]],

K = 1:10, varNames = colnames(tData.n[[1]])[c(1,

2)], trans = 0, nu = 4,

nu.est = 1)

We can examine the BIC plots for each set of models and we can
choose the model with the max BIC from each fitting procedure
and then we can proceed to plot the best fitting models to get an
idea how they differ.

Model Selection
BIC
We use the Bayesian Information Criterion (BIC) to choose the best fitting model within each
model class.

par(mfrow = c(2, 2))

plot(BIC(fc.all), main = "All at Once + Transformation",

type = "o")

plot(BIC(fc.all.notrans), main = "All at Once",

type = "o")

plot(BIC(fc.sequential), main = "FSC v SSC + Transformation",

type = "o")

plot(BIC(fc.sequential.notrans),

main = "FSC v SSC", type = "o")

●

● ● ● ● ● ●

●

● ●

2 4 6 8 10

−
50

00
0

−
35

00
0

All at Once + Transformation

Index

B
IC

(f
c.

al
l)

●

●

●
●

● ●
● ● ●

●

2 4 6 8 10

−
31

00
0

−
28

00
0

All at Once

Index

B
IC

(f
c.

al
l.n

ot
ra

ns
)

●

●

●
●

●
●

● ● ● ●

2 4 6 8 10

−
88

00
0

−
87

00
0

−
86

00
0

FSC v SSC + Transformation

Index

B
IC

(f
c.

se
qu

en
tia

l)

●

●

● ●
● ● ● ● ● ●

2 4 6 8 10

−
88

00
0

−
87

00
0

−
86

00
0

FSC v SSC

Index

B
IC

(f
c.

se
qu

en
tia

l.n
ot

ra
ns

)

Automate Model Selection
Model selection can be automated, without examining the BIC plots.

fc.all <- fc.all[[which.max(BIC(fc.all))]]

fc.all.notrans <- fc.all.notrans[[which.max(BIC(fc.all.notrans))]]

fc.sequential.notrans <- fc.sequential.notrans[[which.max(BIC(fc.sequential.notrans))]]

fc.sequential <- fc.sequential[[which.max(BIC(fc.sequential))]]

flowClust Object Details

getSlots("flowClust")

expName varNames K
"character" "character" "numeric"

w mu sigma
"vector" "matrix" "array"
lambda nu z

"numeric" "numeric" "matrix"
u label uncertainty

"matrix" "vector" "vector"
ruleOutliers flagOutliers rm.min

"vector" "vector" "numeric"
rm.max logLike BIC

"numeric" "numeric" "numeric"
ICL

"numeric"

Some Helper and Accessor Methods

slots
You can access the data in any slot using the @ method.

fc.all@mu

fc.all@sigma

This would allow you to inspect the means and covariances of each
cell population (cluster) in the model.

Mapping Events to Cell Subpopulations

Mapping from events to cell populations is done via the z matrix.

I Probability of membership of each element to each of the
model clusters.

I Get the mapping using the Map() method.

Map(fc.all)

Linking Data and Models

flowObj objects

flowClust generates multiple models for the same set of data. In
order to keep track of which data set corresponds to which model,
we can combine them in a flowObj object. Plotting flowClust

models is also simplified for this type of object.

fc.all <- flowObj(fc.all, tData.n[[1]])

fc.all.notrans <- flowObj(fc.all.notrans,

tData.n[[1]])

fc.sequential <- flowObj(fc.sequential,

tData.n[[1]])

fc.sequential.notrans <- flowObj(fc.sequential.notrans,

tData.n[[1]])

I flowObj combined model and data
I Memory efficient: keep only one copy of the data for multiple

models
I Extract data via getData(object)

Plotting flowClust Models

par(mfrow = c(2, 2))

plot(as(fc.all, "flowClust"), data = tData.n[[1]],

subset = c("CD3", "CD8"), pch = 20,

main = "All at once + transformation")

plot(as(fc.all.notrans, "flowClust"),

data = tData.n[[1]], subset = c("CD3",

"CD8"), pch = 20, main = "All at once")

plot(as(fc.sequential, "flowClust"),

data = tData.n[[1]], pch = 20,

main = "FSC v SSC + transformation")

plot(as(fc.sequential.notrans,

"flowClust"), data = tData.n[[1]],

pch = 20, main = "FSC v SSC")

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

All at once + transformation

CD3

C
D

8

●
●

●
●

●
●●

●
●●

●
●

●●
●

● ●
●● ● ●

●●

●
● ●
●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●
● ●●

●

●

●

●

● ●

●
●
●
●
●

●

●

●
●

●

●● ●

●●

●●
●

●

●
●

●
●

●● ●●●
●

●●
●●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●
●●

●● ●●
● ●

●

●● ●● ● ●
●●

●
● ●

●
●

●

●

●

●

●

●
●
● ●●●

●●●
●

● ●●
●●
●
●
●

●

●
●

● ●●●

●

● ● ●●

●
●

●

●
●●

● ●
●●

●

●
●

●
●

● ●

●

●●

●● ●● ●

●
●

● ●
●

●
●

●

●

●

●

●
●

●
● ●
●

●

●

● ●
●●

●● ●
●

●
●

●

●

●

●
●

●
● ●●

●●
●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●●
●●

●●
● ●

●

●

●
●

●

●● ●

●

●●●
●●

●●● ●
●

●

●

●

●

●
●● ●

●
●
●

●●●●

●

●

●

●

● ●

●

●
● ● ●

●

●

●●

●●
●

●●

●

●
●●

●
●

●

●

●●
●

●●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●
●
● ●

●●●

●
●
● ●●

●

●● ●
●

●

●●

● ●

● ●
●

●

●
●●

● ●●●
●

● ●
●

●●
●

●

●

●
●

●●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●

●

● ●
●

●●
●

●
●● ●●

●
●
●

●
●

●●

●
● ●

●

●

●

●

●

●

●
●

●
●
●●
●

●
●

●
●●●● ●

●
●●

●●●●

●

●

●

●●●
●
●

●●
●

● ●

●

●
●●

●●●

●●●●
●

●
●●

●

●
●●

● ●●●
●

●

●
●
● ●

●●
●●

●
●
●

●
●●●

●

●

●

●●
●

●

●●

●
●
●●●

● ●

●

●
●

●

●

●
●

●
●
●

●
●●

●

●
●

●
● ●●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●●

●

●
●

●

●

●

●●
●

●●

●
●

●

●
●

●
●
●

●●
●●●●●
●

●
●

●

●

●

●

●

●
●●
● ●

●

●

●

●●

●

●●
●

●
●
●

● ●●
●

●

●
●●

●●
●●

●
●●
●

●●

●●

●●

●
●●●

●

●●

●●

●

●
●●●

●

●
●

●

●
●

●

●

●●●
● ●
●●

● ●
●

●

●

●●

●●
●

●●● ●
●
●
●
●

●

●

●●

●●

●

●
●●

●

●

●
●
●

●

●●●
●

●

●●

●●
●

●

●

●●

●
●

●
●

●

●

●● ●
●
●

●●

●

●
●

●

●●

●

●
●
●

●●

●● ●
●

●

●
●

●

●
● ●●

●
●●

●

●●

● ●
●

●

●●
● ●●
●

●

●

●

●

●
●●

●

●
●
●

●
●●

●

●●●
●

●
●

●●●
●●●
●

●
●●●

●●

●

●

●●
●

●
●

●●●

●
●

●

●

● ●
●
●
●● ●●

●
●

●
●
● ●
● ●
●●
●

●
●

●
●

●●
●●

●

●

●●●
●
●
● ●

●●

●
●

●
●

●
●

●
●●●
●

●
●●

●●

●
●●●●●

●

●●●
●
●

●

●

●
●

●
●
●

●
●

●

●

●● ●
●

●

●

●

●

●
●●

● ●●●

●●

●● ●●
●

●
●●

●
●●

●
●●

●
●
●

●●
●●●

●●
●

●

●
●●

●●●●
●
●●

●
●

●●
●

●●●●

●●

●
●
●●

●

●

●●

●●●●

●●

●

●

●●
●

●●

●

●

●

●
●●●

●

●

●
●●

●●●
●●

●
●
●●●

●
●

●
●

●
●

●

●●
●●

●
●

●●
●

●
●

●●
●

●
●
●●●

●

●●●●
●

●
●

●●●
●

●
●

●●

●

●●
●●●
●

●

●●
●●●

● ●
●

●
●●

●

●

●
●

●

●

●
●

●

●●
●●

●
●●
●●

●
●● ●●●

●● ●
●●

●
●●
●●●

●
●
●
●

●

●
●●
●

● ●●●●

●●

●
●
●

●●

●

●
●●

●●

●
●
●
●●●
●

●

●
●●

●

●●
●

●

●●●●
●

●

●

●
●

●●

●

●
●

●

● ●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

● ●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●
●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●

● ● ●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●● ●●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

●●

●

●
●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●● ●

●

●
●

●

●
●● ●

●
●

●

●
●

●

●
● ●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

● ●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

All at once

CD3

C
D

8

●●●● ●
●

●●
●

●

●
●

● ● ●
●

●
●

●●

●

●

●

●

●

●

●

●●●

●
●●●

●●
● ●●

●●

●

●●

●

●

●

●
●●
●

●●●
●

●●
●

●
●

●●
●

●
●
●

●
● ●

●

●
●

●

●

●●

●
●

● ●●
●

●

●
●
●●

●
●

●
●

●
●

●
●

●

●● ●●
●●
●

●●●

●
●
●

●
●

●●●
●●

●
●

●

●
●

●
●

●
●

● ●

●

●

●● ●●

● ● ●●
●

●

●

●

●
●

●

●
●●

●
● ●
●

●

●

● ●●
● ●
●

●
●●

●●
●

●

●●
●

●
●●

●
●●
●●●

●
●

●

●
●

●

●

●

●
●

●

●●

● ●
●●

●
●●●

●

●
●

●

●●
● ●

●
●
●● ●●

●

●●●
●

●●
●

●

●

●

●
●

●

● ●
●
●
●

●●

●

●
●
●●

●●
● ●●

●

●●

●●
● ●

●●

●

●
●●

●

●●●●●
●

●●

●

●

● ●●
●

●●
●

●
●

● ●
●● ●

●●

●● ●
●
● ● ●

●●

● ●

●●●●

● ●

●
● ●

●●
●●●

●

●
●

●
●●

●

●

●● ●

●

●

●

●● ●●
●

●

●
●

●

●
●●

●
●

●

●
●

●

● ●
●

●●
●

●●●

●
●
●●●

●

●
●

●

●
●● ●

●

●

●

●●
●

● ●

●

● ●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●● ●●

●
●

●
●

●

●

●

●

●
●

●

●

● ●
●

● ●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●●●● ●

●

●
●●●●

●
●

●●●
●
●
●
●

● ●

●

●●
●●●

●●●●
●●● ●

●●
● ●●●

●

●

●

●
●
●

●

●
●●
●●

●
●
●

●
●●●
●

●

●

●

●●
●

●

●
● ●●
● ●

●
●● ●

●

●

●
●

●

●
●●

●●
●
●

●

●
●

●
● ●

●

●
●

●

●

●
●

●

●
●

●●
●
●●●

●

●

●

●
●

●●
●
●

●
●

●

●
●

●
●
●

●●
●●●●

●

●
●

●

●

●

●●
● ●
●

●

●●

●

●●
●

●
●
●

●●
●

●
●

●
●●

●●
●

●
●●
●

●●

●

●●

●
●●●

●

●
●●

●

●
●●●

●

●
●

●

●
●

●●●
● ●
●●

●

●

●

●●

●●● ●

●
●

●
●●

●●

●

●
●●

●

●

●
●
●

●

●●●
●

●

●

●
●

●

●

●●

●
●

●
●

● ●

●
●
●

●●

●

●
●

●

●●

●

●
●

●●

●● ●
●●
●

●

●

●
●●

●
●●

●

●●

●
●

●●
●

●

●

●

●●

●
●●

●●

●
●
●

●
●●●●●

●
●

●

●
●
●●
●

●
●●●

●●

●

●●
●

●
●

●●●

●●

●

●
●
●
●●●●

●
●

●
●
●● ●
●●
●

●
●

●
●

●●

●

●

●

●●
●
●
● ●

●●

●

●

●

●
●

●●
●●●

●●

●
●

●

●●●●

●

●●●
●
●
●

●

●
●

●
●
●●

●

●

●●
●

●

●

●

●

●
●●

● ●●●

●●

●● ●●
●
●

●

●
●●

●
●●

●
●
●
●●●

●
●

●

●●
●●●

●

●
●●

●
●

●

●●●●

●●

●●●
●

●●

●
●●●●

●●

●

●

●●

●

●

●

●

●
●●●●

●

●

●
●●

●●●

●
●
●●●

● ●
●

●●
●

●

●●
●●

●
●

●●

●

●●
●

●●●

●

●●●

●

●●●●
●

●
●

●●●
●●●
●

●

●
●●●

●
●

●

●
●●

●

●
●

●

●

●
●

● ●●
●●

●
●●

●

●
●● ●●●

●

●● ●
●●

●●
●●●

●

●

●

●

●
●
●

●●●●

●●

●

●●
●
●●

●●
●
●
●●

●

●

●
●●●

●

●
●●●

●
●

●

●
●

●●
●●
●

●●

●

●

●
●

●
●

●●
●
●

●

●

●
●
●

●

●

●

●●●
●●

●

●

●

●●● ●

●

●

●
●

●

● ●● ●
●

●
●

●
●

●

●

●
●

●
● ●

●

●

●

●

●●
●

●●

●●●
●●

●

●

●●

●

● ● ●
●●

●● ●
●

●

● ●

●

●

●
●●
●

●
●

●●●

●
●

●

●
●●

●
●

●
● ●

● ●●
●

●

●

●

●●
●

●
●
●

●

●

●●

●
●

●
●●

●
●●● ●

●
●●

●

●
●

●
●

●

●

●
●●

●
●
●

●

●

●

●
●
●

●●

●

●
● ●

●

●

●

●
●

●●●

●●
●

●●

●
●●

●

●●
●

●

●

●● ●●●
●

● ●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

● ●
●

●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●● ●

●
●

●

●
●

●

●

●
● ●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

200 400 600 800 1000

0
20

0
60

0
10

00

FSC v SSC + transformation

FSC

S
S

C

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

● ●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●
● ● ●

●
●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
● ●●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

● ●
●

●● ●

●

●

●●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●●
●

●

●
●

●

●

● ●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●● ●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●●

●●

●
●

●
●

● ●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●
●

●●

●
●

● ●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●● ●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

● ●

●

●

●●
●

●

●●
●

●

●

●● ●●●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●●●
●

●

●

● ●
●

●

●

● ● ●
●

●

●
●●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●●● ●

●

● ● ● ●

●

●●

●

●●

●

●
●

●

●●● ● ●
●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●

● ● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

● ● ●

●

●

●
●

●

● ●●

●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●
●

●●

●

●
●

●

●●●

●●
●

●

● ●

●
●

●

● ●
●

●

● ●

●●

●

●

●

●
●

●

●
●●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●● ●

●

●

●

● ●●

●

●●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●●

●
●

● ●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●
● ●

●

●

●
● ●

●●
● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●● ●●
●

●

●

●

●

● ●

●●

●
●●

●

●

●●

●

●

●
●

●

●●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●●

● ●

●

● ●
●

●

●

●
●

●
●

●
●

●●

●

●

● ● ●

●

● ● ●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●
● ●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
● ●

●●
● ●

●

●

●

●

●

● ●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●● ●
●

●●

●

●

●

●

●

●●

●●

●

●

● ●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

● ● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●●
●

●
●

● ●
●

●
●

●

● ●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●●

●
●

●

●● ●

●

●

●

●

● ●

●

●
● ● ●

●

●

●●

●●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●
●● ●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●
● ●

●

● ●

●

● ●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

● ●
●

●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

200 400 600 800 1000

0
20

0
60

0
10

00

FSC v SSC

FSC

S
S

C

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

● ●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
● ● ●

●
●

●
●●●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●
●

●

●

●
●

● ●
●

●

●

● ●

●

●

●●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●●
●

●
●

●

●

● ●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●●
●

●

●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

●● ●

●
●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●● ●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●●

●●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●
●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●
● ●

●
●

●

●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●●
●

●

●

● ●
●

●

●

● ● ●
●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●● ●●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●●● ●

●

● ● ● ●

●

●●

●

●●

●

●

●
●

●

●●●● ● ●
●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●

● ● ●●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

● ● ●

●

●

●
●

●

●

● ●●

●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●●
●

●

● ●
●

●

●
●

●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●
●

●●

●

●
●

●

●●●

●●
●

●

● ●

●
●

●

● ●
●

●

● ●

●●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●● ●

●

●

●

● ●●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●●●

●
●

● ●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●
● ●

●

●

●
● ●

●●
● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●● ●●
●

●

●

●

●

●

● ●

●●

●
●●

●

●

●●

●

●

●
●

●

●●

● ●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●

● ●

●
●●

● ●

●

● ●
●

●

●

●
●

●
●

●
●

●●

●

●

● ● ●

●

● ● ●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

● ●
●

●

●

●

●
●

●
● ●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●● ●

●●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●
●

● ● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●
● ● ●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●
●

●

●
●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

● ●

●

● ●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

I All–at–once clustering with or without
transformation doesn’t identify the
CD8/CD3+ cell population correctly.

I Optimal parameters for scatter dimensions
and fluorescence dimensions are different.

I Could use gaussian mixtures, but it would
affect the clustering of scatter dimensions.

I Best option is sequential gating of scatter
followed by fluorescence dimensions.

I Single cell population modeled by three
clusters in the scatter channels.

I flowMerge can help model it as distinct
cell population.

flowMerge Objects
getSlots("flowMerge")

merged entropy
"numeric" "numeric"

DATA expName
"environment" "character"

varNames K
"character" "numeric"

w mu
"vector" "matrix"

sigma lambda
"array" "numeric"

nu z
"numeric" "matrix"

u label
"matrix" "vector"

uncertainty ruleOutliers
"vector" "vector"

flagOutliers rm.min
"vector" "numeric"
rm.max logLike

"numeric" "numeric"
BIC ICL

"numeric" "numeric"

flowMerge

Purpose

Merge overlapping clusters to model distinct cell populations.

Usage

flowMerge requires that each cluster is modeled with a common
degrees of freedom and a common transformation parameter.
Merging clusters is trivial, given the flowObj model object:

m1 <- merge(fc.sequential.notrans)

m2 <- merge(fc.sequential)

The code above merges clusters in the sequentially gated model,
with and without transformation. The output is a list of merged
models. The next step is to identify the optimal merged model.

flowMerge
Evaluating Merged Models

The entropy of clustering is a measure of how much clusters overlap with
each other. By examining plots of the entropy vs the number of clusters,
or vs the cumulative number of merged observations, we can identify the
point where further merging doesn’t significantly improve the entropy (i.e.
clusters are well separated).

par(mfrow = c(2, 2))

fitPiecewiseLinreg(m1, plot = T,

normalized = TRUE,)

fitPiecewiseLinreg(m1, plot = T,

normalized = FALSE)

fitPiecewiseLinreg(m2, plot = T,

normalized = TRUE)

fitPiecewiseLinreg(m2, plot = T,

normalized = FALSE)

●
●

●

●

●

0 2000 6000 10000

0
20

00
40

00

Entropy of Clustering

Cumulative Number of Merged Observations

E
nt

ro
py

●
●

●

●

●

1 2 3 4 5

0
20

00
40

00

Entropy of Clustering

Number of Clusters

E
nt

ro
py

● ●

●

●

●

0 2000 6000 10000

0
20

00
40

00

Entropy of Clustering

Cumulative Number of Merged Observations

E
nt

ro
py

● ●

●

●

●

1 2 3 4 5

0
20

00
40

00

Entropy of Clustering

Number of Clusters

E
nt

ro
py

The flowMerge package has functionality to
automatically identify the changepoint in these
plots, which can be used to extract the optimal
model. Plots of the different model fits are
shown in the vignette.

flowMerge Model Plots
par(mfrow = c(2, 2))

plot(m1[[3]])

plot(m2[[3]])

plot(m2[[2]])

200 400 600 800 1000

0
20

0
60

0
10

00

FSC

S
S

C

200 400 600 800 1000

0
20

0
60

0
10

00

FSC

S
S

C

200 400 600 800 1000

0
20

0
60

0
10

00

FSC

S
S

C

In this particular case, the different model fits are comparable,
except for an extra population to handle outliers. We choose
model 2, the 3-cluster model with transformation

flowMerge

Model Selection and Data Extraction
We can identify the optimal merged model from the model 2 series
of fits using fitPiecewiseLinreg and then extract the gated
populations:

m <- m2[[fitPiecewiseLinreg(m2,

normalize = FALSE)]]

fl <- split(f = m)

Outlier Threshold

ruleOutliers
We can modify the threshold for outlier detection when plotting or
extracting a cell population. The ruleOutliers function modifies the
outlier detection rule. Most commonly, we’ll use a certain quantile of the
distribution, beyond which events are considered outliers. The default is
the 90% quantile. When we extract the population, we see the number of
included events changes based on the outlier threshold.

ruleOutliers(m)

Rule of identifying outliers: 90% quantile

dim(split(f = m)[[1]])

events parameters
481 8

ruleOutliers(m) <- list(level = 0.99)

Rule of identifying outliers: 99% quantile

dim(split(f = m)[[1]])

events parameters
510 8

Plotting Subpopulations
Second Stage Clustering

We have extracted the clustered data, and plot subpopulation 1. This is
the subpopulation that has CD3+/CD4+ and CD3+/CD8+ cells.

splom(fl[[1]][, c(1, 2, 3, 5, 6,

7)])

Scatter Plot Matrix

FSC

SSC

CD8

CD4

CD3

HLADr

print(splom(fl[[2]][, c(1, 2, 3,

5, 6, 7)]))

Scatter Plot Matrix

FSC

SSC

CD8

CD4

CD3

HLADr

Second Stage Clustering

fl.trans <- flowClust(fl[[1]],

varNames = colnames(fl[[1]])[c(3,

5, 6)], K = 1:10, trans = 1,

nu = Inf, nu.est = 0)

fl.notrans <- flowClust(fl[[1]],

varNames = colnames(fl[[1]])[c(3,

5, 6)], K = 1:10, trans = 0,

nu = Inf, nu.est = 0)

We run the second stage clustering on the CD3/CD4/CD8
fluorescence channels, using gaussian mixtures and t–mixtures.
Populations are relatively symmetric in the fluorescence channels,
so we opt for no transformation.
Again, the data has been pre-computed to save time. You can load
it with:

data(flowMerge2)

Second Stage Clustering
Compare BIC plots

par(mfrow = c(1, 2))

plot(BIC(fl.trans), type = "o",

main = "BIC, flowClust\nmodels with transformation")

plot(BIC(fl.notrans), type = "o",

main = "BIC, flowClust\nmodels without transformation")

●

●

● ● ●
●

● ● ●

●

2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

BIC, flowClust
models with transformation

Index

B
IC

(f
l.t

ra
ns

)

●

●

●
●

●
●

●

●

2 4 6 8 10

−
60

0
−

20
0

0
20

0
40

0
60

0

BIC, flowClust
models without transformation

Index

B
IC

(f
l.n

ot
ra

ns
)

The best fitting models have four clusters, independent of transformation.

Model Comparison

plot(flowObj(fl.trans[[4]], fl[[1]]),

pch = 20, new = T, main = "With transformation, K=4")

plot(flowObj(fl.notrans[[4]], fl[[1]]),

pch = 20, new = T, main = "Without Transformation, K=4")

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

With transformation, K=4

CD8

C
D

4

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●● ●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

With transformation, K=4

CD8

C
D

3

● ●
●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●● ●

●

●

●

●

● ●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

With transformation, K=4

CD4

C
D

3

● ●
●●●
●

●

●

●

●

●

●

●

●
●●

●

●

●● ●

●

●

●

●

● ●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

● ●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=4

CD8

C
D

4

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●● ●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=4

CD8

C
D

3

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●● ●

●

●

●●
●

● ●

●●●

●

●● ●
● ●
●

●
●

●

●
●

●
●

●
●
●

●
●● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=4

CD4

C
D

3
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●●
●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●●●

●

●

●●
●

●●

●●●

●

● ●●
●●

●

●
●

●

●
●

●
●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

It’s interesting to note that the CD3+/CD8+ cell population
identified in the model without transformation, and K=4 clusters
picks up a couple of CD3+/CD8- events. This is due to the low
density nature of this cell population and our use of t–mixtures for
modeling. We could have a look at the K=5 solution (even though
it doesn’t have the highest BIC value) to see if we get further
resolution of this cell population.

Model Comparison
K=5 Solution, With Transformation

plot(flowObj(fl.notrans[[5]], fl[[1]]),

pch = 20, new = T, main = "Without Transformation, K=5")

NULL

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=5

CD8

C
D

4

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

● ●
●● ●

●●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=5

CD8

C
D

3

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●●
●

● ●

●●●

●

●● ●
● ●
●

●
●

●

●
●

●
●

●
●
●

●
●● ●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Without Transformation, K=5

CD4

C
D

3

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●
●

●●

●●●

●

● ●●
●●

●

●
●

●

●
●

●
●

●
●

●
●

●●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●●
●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

The CD3+/CD8+ and CD3+/CD4+ cell populations are now well
defined. There are two additional populations that pick up some dim
events in the CD4 and CD8 dimensions.

Subpopulation Selection
Using the estimated population means

We want the CD8+/CD3+ and CD4+/CD3+ subpopulations. We can
make use of model parameters estimated by flowClust to select these
programmatically.

fl.2 <- flowObj(fl.notrans[[5]],

fl[[1]])

ruleOutliers(fl.2) <- list(level = 0.99)

Rule of identifying outliers: 99% quantile

order(fl.2@mu[, 1], fl.2@mu[, 3],

decreasing = TRUE)[1]

[1] 2

order(fl.2@mu[, 2], fl.2@mu[, 3],

decreasing = TRUE)[1]

[1] 3

I Raise the outlier threshold.
I Use order to sort populations on their CD8/CD3, and CD4/CD3

columns.
I The CD8+/CD3+ and CD4+/CD3+ populations are the first in the

list returned by the above code.

Subpopulation Selection
hladr <- split(x = getData(fl.2),

f = as(fl.2, "flowClust"),

population = list(CD8CD3 = order(fl.2@mu[,

1], fl.2@mu[, 3], decreasing = TRUE)[1],

CD4CD3 = order(fl.2@mu[,

2], fl.2@mu[, 3], decreasing = TRUE)[1]))

print(densityplot(~CD8 + CD4 +

HLADr, as(hladr, "flowSet")))

CD4CD3

CD8CD3

0 1 2 3

CD8

0.0 0.5 1.0 1.5 2.0 2.5

CD4

0 1 2 3

CD4CD3

CD8CD3

HLADr

The HLADr+ cells are rare. There’s no point running flowClust

on these populations as there aren’t enough data points to fit a
good model. We can use the rangeGate function from flowCore

for 1D gating instead.

Gating HLADr+ Cells
RangeGate

hladr.cd3.cd4 <- Subset(hladr[[1]],

rangeGate(hladr[[1]], stain = "HLADr",

plot = FALSE, alpha = 0.5,

filterId = "CD3+CD4+HLAct"))

hladr.cd3.cd8 <- Subset(hladr[[2]],

rangeGate(hladr[[2]], stain = "HLADr",

plot = FALSE, alpha = 0.5,

filterId = "CD3+CD8+HLAct"))

100 * dim(hladr.cd3.cd4)[1]/dim((data[[1]]))[1]

events
0.025

100 * dim(hladr.cd3.cd8)[1]/dim((data[[1]]))[1]

events
0.075

I 0.02 % of cells are CD3+/CD8+/HLADr+
I 0.05 % of cells are CD4+/CD3+/HLADr+

Now that we’ve worked out the gating, we’d like to quickly analyze all the
samples in the same manner.

Running flowClust in Parallel

The snowfall package

flowClust has support for parallel processing via the snow and snowfall

packages. We initialize snowfall by running:

Initialization

sfInit(parallel = TRUE, cpus = 4)

Parallel flowClust
The following code performs the forward and side scatter gating on the full
set of samples. fsApply cycles through the samples in the flowSet. We’ll
use the parameter settings we decided upon from the first run.

result <- fsApply(tData.n, function(x) flowClust(x,

K = 1:10, trans = 1, nu = 4,

nu.est = 1, varNames = colnames(x)[1:2]))

sfStop()

The data takes some time to process. A pre-computed version has been
provided to save time:

data(flowMerge3)

Next we extract the max BIC solution for each sample, construct
flowObj objects, and do the merging.

Running flowClust in Parallel
Model Selection
Essentially, we proceed as before, but wrapping calls in lapply, and
sapply statements to loop through the different samples.

result <- lapply(result, function(x) x[[which.max(BIC(x))]])

result <- sapply(1:length(data),

function(i) flowObj(result[[i]],

tData.n[[i]]))

result <- lapply(result, function(x) {

m <- merge(x)

m[[fitPiecewiseLinreg(m)]]

})

Semiautomated Gating

indices <- unlist(lapply(result,

function(x) {

plot(x)

z <- unlist(locator(n = 1))

inc <- which.min(sapply(1:x@K,

function(i) mahalanobis(box(z,

lambda = x@lambda),

x@mu[i, 1:2], x@sigma[i,

,])))

plot(x, include = inc)

inc

}))

The code above will allow you to select the lymphocyte population from
each gated sample interactively by clicking on the center of the desired
population in a plot. This is required because a priori we don’t know the
index of the lymphocyte populations we’re interested in.
We load the pre-gated data for this analysis. We then proceed to exract
the populations of interest (see vignette for details), and run the next
stage of clustering.

The code above will compute the mahalanobis distance between
the location you select and each cell population on the transformed
scale. The mahalanobis() function is provided by the stats
package. The Box–Cox transformation box() is provided by
flowClust, and takes the transformation parameter specific to the
sample under consideration as an argument, as well as the data
being transformed.
Again, we extract the populations of interest using split(), and
run the next stage of clustering on the fluorescence channels.

result.split <- sapply(1:length(result),

function(i) split(f = result[[i]])[[indices[i]]])

Stage 2 Clustering
We’ll run flowClust with cluster–specific transformation parameters. We won’t
be able to run flowMerge in this case, but it will give us more model flexibility.

sfInit(parallel = TRUE, cpus = 2)

result.fl <- lapply(result.split,

function(x) flowClust(x, B.init = 100,

K = 1:10, varNames = colnames(x)[c(3,

5, 6)], nu = Inf, nu.est = 0,

trans = 2))

sfStop()

And, again, we can load the pre-computed data to save time here:

data(flowMerge4)

result.fl.bic <- sapply(1:length(result.fl),

function(i) flowObj(result.fl[[i]][[which.max(BIC(result.fl[[i]]))]],

result.split[[i]]))

Automated Gating
Recall that the CD8+/CD3+ population is not well defined for sample 1.
We manually select a model with five clusters rather than the model with
4 clusters.

plot(result.fl.bic[[1]], pch = 20)

result.fl.bic[[1]] <- flowObj(result.fl[[1]][[5]],

result.split[[1]])

plot(result.fl.bic[[1]], pch = 20)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

CD8

C
D

4

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

CD8

C
D

3

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●●● ●●● ●

●●
●

●

●
●

●●●
●

●
●

●

●
●

●

●● ●

●●

● ●●● ● ●
●

●

●●

●

●

●●
●●

●

●
●

●

●
●

● ●

●

●
●●

● ●●●
●

●
● ●

●●
●

●●
●
●●

●

●

●
●●

●

● ●

●

●
●●●

●

●

●●
●

●

●
●

●●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●

● ●●

●

●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●● ●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●
●

●
●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

CD4

C
D

3

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●● ●● ●●● ●

●●
●

●

●
●

● ●●
●

●
●

●

●
●

●

●● ●

● ●

●● ●● ●●
●

●

●●

●

●

●●
● ●

●

●
●

●

●
●

● ●

●

●
●●

● ●●●
●

●
● ●

●●
●

● ●
●

● ●

●

●

●
●●

●

● ●

●

●
●●●

●

●

●●
●

●

●
●

●●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●

● ●●

●

●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

Extracting HLADr+ Population
Extract the CD4+/CD3+ and CD8+/CD3+ populations and look at the
HLADr markers.

fl.split.cd8 <- sapply(1:length(result.fl.bic),

function(i) split(x = result.split[[i]],

f = as(result.fl.bic[[i]],

"flowClust"), population = list(order(result.fl.bic[[i]]@mu[,

1], result.fl.bic[[i]]@mu[,

3], decreasing = TRUE)[1])))

fl.split.cd4 <- sapply(1:length(result.fl.bic),

function(i) split(x = result.split[[i]],

f = as(result.fl.bic[[i]],

"flowClust"), population = list(order(result.fl.bic[[i]]@mu[,

2], result.fl.bic[[i]]@mu[,

3], decreasing = TRUE)[1])))

Range Gate
1D Gating of HLADr+ Cells

Finally, we can gate the HLADr positive populations using the rangeGate
function again.

all.hladr.cd3.cd8 <- lapply(fl.split.cd8,

function(x) Subset(x, rangeGate(x,

stain = "HLADr", plot = FALSE,

borderQuant = 0.5, alpha = 0.5,

filterId = "CD3+CD8+HLAct")))

all.hladr.cd3.cd4 <- lapply(fl.split.cd4,

function(x) Subset(x, rangeGate(x,

stain = "HLADr", plot = FALSE,

borderQuant = 0.5, alpha = 0.5,

filterId = "CD3+CD4+HLAct")))

Getting Cell Proportions

We can get the percentage of cells from the counts.

CD4.hladr <- sapply(1:length(all.hladr.cd3.cd4),

function(i) 100 * dim(all.hladr.cd3.cd4[[i]])[1]/dim(data[[i]])[1])

CD8.hladr <- sapply(1:length(all.hladr.cd3.cd8),

function(i) 100 * dim(all.hladr.cd3.cd8[[i]])[1]/dim(data[[i]])[1])

Plotting the Proportions
print(barchart(reorder(PatientID,

as.numeric(factor(GroupID))) ~

pr, data = data.frame(pr = as.vector(CD4.hladr),

pData(data)[, c("GroupID",

"PatientID")]), groups = GroupID,

auto.key = T))

print(barchart(reorder(PatientID,

as.numeric(factor(GroupID))) ~

pr, data = data.frame(pr = as.vector(CD8.hladr),

pData(data)[, c("GroupID",

"PatientID")]), groups = GroupID,

auto.key = T))

pr

pid214

pid225

pid333

pid349

pid409

pid778

pid847

pid149

pid244

pid291

pid300

pid867

pid877

pid993

0.0 0.2 0.4 0.6

DRUG A
DRUG B

pr

pid214

pid225

pid333

pid349

pid409

pid778

pid847

pid149

pid244

pid291

pid300

pid867

pid877

pid993

0.00 0.05 0.10 0.15 0.20 0.25

DRUG A
DRUG B

Metaclustering
Metaclustering is the term for classifying common cell populations
across multiple samples.

flowMetaCluster

I flowMetaCluster: a package for metaclustering cell
populations from flowClust and flowMerge models.

I Still under active development, not yet ready for release.

I We provide some examples of its functionality.

Approaches

I Two different algorithms for metaclustering.

I Clustering cell populations based on means and covariances
using Mahalanobis distance.

I Clustering cell populations based on entropy due to overlap,
analogous to flowMerge.

Both algorithms are implemented in the package.

flowMetaCluster
We’ll metacluster some lymphoma data
for this example. Although the package
is not distributed for this workshop, we
want to provide some examples of the
types of tools that are in the works.

require(flowMetaCluster)

require(snowfall)

data(lymphoma)

I Load the lymphoma data and
required packages.

I Plot the data to examine the
distribution. The scatter channels
indicate a single population.

I Run flowClust/flowMerge on the
fluorescence channels.

print(xyplot(FS ~ SS, lymph[[1]]))

SS

F
S

0

200

400

600

800

1000

0 200 400 600 800

The above plot is representative of the data distribution in the
forward and side scatter dimensions of this data set. Therefore
there is no need to run flowClust on FSC and SSC. We choose the
default parameterization of an estimated transformation, and an
estimated degrees of freedom, and fit models with one through ten
components on the fluorescence channels.

flowMetaCluster
We run flowClust on the data, followed by flowMerge.

Parallel flowClust

result.lymph <- fsApply(lymph,

function(x) flowClust(x, varNames = colnames(x)[-c(1:2)],

K = 1:10, nu = 4, trans = 1,

nu.est = 1))

Parallel flowMerge

sfInit(parallel = TRUE, cpus = 4)

clusterEvalQ(sfGetCluster(), library(flowMerge))

m <- sfLapply(result.lymph.opt,

merge)

k <- sfLapply(m, fitPiecewiseLinreg)

sfStop()

m <- sapply(1:length(k), function(i) m[[i]][[k[[i]]]])

Metaclustering flowMerge objects
With a series of fitted flowMerge objects, it is trivial to run the
metaclustering algorithms.

#Mahalanobis distance metaclustering

meta<-metaCluster(m);

#Entropy-based metaclustering

meta2<-metaClusterByMerging(m);

Two different data structures, meta and meta2 store information
required to generate metacluster memberships for entropy–based
metaclustering and metaclustering based on Mahalanobis distance
between populations. The flowMetaCluser provides functionality
for extracting and plotting the metaclustered cell populations using
these structures. More information is provided in the Vignette.

flowMetaCluster Objects

Mahalanobis distance based metaclustering

getSlots("flowMetaCluster") #S4 object

flow Indicator
"environment" "data.frame"

Entropy Based Metaclustering

names(meta2); #S3 object

[1] "z" "adjacency" "entropy"

Plotting MetaClusters
We can plot relevant projections of individual metaclusters:

Plot by Metacluster

print(plot(meta, by = "metacluster",

KK = 1, main = "Metacluster 1"))

FL1.LOG

N=5

0 200 400 600

0
20

0
40

0
60

0
80

0

Metacluster 1

FL1.LOG

F
L2

.L
O

G

FL2.LOG

N=5

0
20

0
40

0
60

0
80

0

Metacluster 1

F
L2

.L
O

G

N=5

0
20

0
40

0
60

0
80

0

Metacluster 1

F
L2

.L
O

G

FL4.LOG

print(plot(meta, by = "metacluster",

KK = 2, main = "Metacluster 2"))

FL1.LOG

N=9

0 200 400 600

0
20

0
40

0
60

0
80

0

Metacluster 2

FL1.LOG
F

L2
.L

O
G

FL2.LOG

N=9

0
20

0
40

0
60

0
80

0

Metacluster 2
F

L2
.L

O
G

N=9

0
20

0
40

0
60

0
80

0

Metacluster 2

F
L2

.L
O

G

FL4.LOG

Plotting MetaClusters

Plot by Metacluster

print(plot(meta, by = "metacluster",

KK = 3, main = "Metacluster 3"))

print(plot(meta, by = "metacluster",

KK = 4, main = "Metacluster 4"))

FL1.LOG

N=6

0 200 400 600

0
20

0
40

0
60

0
80

0

Metacluster 3

FL1.LOG

F
L2

.L
O

G

FL2.LOG

N=6

0
20

0
40

0
60

0
80

0

Metacluster 3

F
L2

.L
O

G

N=6

0
20

0
40

0
60

0
80

0

Metacluster 3

F
L2

.L
O

G

FL4.LOG

FL1.LOG

N=9

0 200 400 600

0
20

0
40

0
60

0
80

0

Metacluster 4

FL1.LOG

F
L2

.L
O

G

FL2.LOG

N=9

0
20

0
40

0
60

0
80

0

Metacluster 4

F
L2

.L
O

G

N=9

0
20

0
40

0
60

0
80

0

Metacluster 4

F
L2

.L
O

G

FL4.LOG

Alternately we can plot by projection, passing by="projection" to plot all
metaclusters of a single 2D data projection.

Metaclustering - Helper Methods
There are a number of helper methods for working with the metaclustered
data.

Return metacluster membership of each cell population.

metaClusterPopulations(meta)

Return the transformed or untransformed means of the populations in each metacluster

getClassMeans(meta)

Return the list of flowMerge objects being clustered

getFlow(meta)

#Return clustering statistics about each metacluster

getClusterStats(meta)

Return the distance matrix used for clustering the data

getDist(meta)

These methods can be used to extract information about each metacluster
for further analysis.

Extracting Metaclustered Populations
Splitting Populations

We can use the split method to extract individual cell populations within
each metacluster. From the plots above, we we want to extract
metaclusters two and four. flowMetaCluster implements the split

method for this purpose.

metacluster2 <- split(meta, metaK = 2)

metacluster4 <- split(meta, metaK = 4)

print(splom(metacluster2[[1]][,

c(3, 4, 5)]))

Scatter Plot Matrix

FL1.LOG

FL2.LOG

FL4.LOG

print(splom(metacluster4[[1]][,

c(3, 4, 5)]))

Scatter Plot Matrix

FL1.LOG

FL2.LOG

FL4.LOG

Entropy Based Metaclustering
Entropy Based Metaclustering

We can also have a look at the entropy vs cumulative number of merged
observations plot for the entropy based metaclustering.

screePlot(meta2)

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●

10000 20000 30000 40000 50000

10
00

00
15

00
00

20
00

00
25

00
00

Cumulative Number of Merged Observations

E
nt

ro
py

I The entropy vs cumulative number of merged observations identifies
when sufficient populations have been merged across samples.

I Localization of the changepoint can be done automatically, as in
flowMerge.

cp <- findChangePoint(screePlot(meta2,

main = "Entropy vs Cum. # Merged Obs."))

print(cp)

[1] 16

The changepoint corresponds to the model with 16 populations. We can
plot this model to see how it looks.

Plotting Merged Metaclusters
Plotting Entropy Based Metaclusters

We can plot the populations identified by
entropy based metaclustering.

plot(meta2)

0 200 600

0
40

0

FL2.LOG

F
L1

.L
O

G

0 200 400 600

0
40

0

FL4.LOG

F
L1

.L
O

G

0 200 400 600

0
40

0
80

0

FL4.LOG

F
L2

.L
O

G

There are four major populations with the
remaining 12 populations corresponding to
various outlier points.

print(plot(m[[1]], pch = ".", new = T,

main = "flowClust fit: Sample 1"))

NULL

0 100 300 500

0
20

0
40

0
60

0

flowClust fit: Sample 1

FL1.LOG

F
L2

.L
O

G

0 100 300 500

0
20

0
40

0
60

0

flowClust fit: Sample 1

FL1.LOG

F
L4

.L
O

G

0 200 400 600

0
20

0
40

0
60

0

flowClust fit: Sample 1

FL2.LOG

F
L4

.L
O

G

Ongoing Work

Work on the metaclustering package is ongoing. We hope to have
development version ready for submission in the near future. We are in the
process of developing greater depth and functionality for the package.

Coming Updates

flowClust/flowMerge

I Integrate flowMerge more closely with workFlows.

I Add explicit parallelization support

I Expand plotting and graphing capabilities

I Implement bayesian priors for rare cell populations.

I ...

flowMetaCluster

I Add support for user provided distance matrix.

I Add more robust support for labeling of cell populatons.

I Entropy-based merging: map metacluster labelled events back
to original populations.

I ...

Selected References

I Merging Mixture Components for Cell Population
Identification in Flow Cytometry Greg Finak, Ali Bashashati,
Ryan Brinkman, Raphael Gottardo. (2009) Adv. In
Bioinformatics.

I Automated Gating of Flow Cytometry Data via Robust
Model-Based Clustering Kenneth Lo, Ryan Brinkman, Raphael
Gottardo. (2008) Cytometry A.

	Sequential Gating

