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Artificial Intelligence is no substitute for the real thing

We are drowning in information and starving 
for knowledge. 
Rutherford D. Roger



Types of Machine Learning

• Supervised Learning
– classification

• Unsupervised Learning
– clustering
– class discovery

• Feature Selection
– identification of features associated with good 

prediction



Components of Machine 
Learning

• features: which variables or attributes of 
the samples are going to be used to cluster 
or classify

• distance: what method will we use to 
decide whether two samples are similar or 
not

• model: how do we cluster or classify 
– eg: kNN, neural nets, hierarchical clustering



Components of Machine 
Learning

Once these have been selected (or a set of 
candidates) we can use cross-validation to:

1. estimate the generalization error
2. perform model selection (could select 

distance or features as well)
3. feature selection (in a different way to 2) 



The No Free Lunch Theorem

• the performance of all optimization 
procedures are indistinguishable when 
averaged over all possible search spaces

• hence there is no best classifier
• issues specific to the problem will be 

important
• human or domain specific guidance will be 

needed



The Ugly Duckling Theorem

• there is no canonical set of features for any 
given classification objective

• Nelson Goodman (Fact, Fiction, 
Forecasting)
– any two things are identical in infinitely many 

ways
– a choice of features, based on domain specific 

knowledge, is essential



Distance

• all (every!) machine learning tool relies on 
some measure of distance between samples

• you must be aware of the distance function 
being used

• some ML algorithms have an implicit 
distance (but it is there none the less)



Getting to Know Your Data

• statisticians call this EDA (Exploratory 
Data Analysis)

• it generally consists of some model free 
examinations of the data to ensure some 
general consistency with expectations



Correlation matrices



Correlation matrices



Distances

• inherent in all machine learning is the 
notion of distance

• there are very many different distances 
(Euclidean, Manhatten, 1-correlation)

• the choice of distance is important and in 
general substantially affects the outcome

• the choice of distance should be made 
carefully



Distances

• distances can be thought of as matrices 
where the value in row i column j is the 
distance between sample i and sample j (or 
between genes i and j)

• these matrices are called distance matrices 
• in most cases they are symmetric



Distances
• clustering methods work directly on the 

distance matrix
• Nearest-Neighbor classifiers use distance 

directly
• Linear Discriminant Analysis uses 

Mahalanobis distance
• Support Vector Machines are based on 

Euclidean distance between observations



Distances

• the Correlation 
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Distance

• it is not simple to select the distance 
function

• you should decide what you are looking for
– patterns of expression in a time course 

experiment
– genes related because they are affected by the 

same transcription factor
– samples with known phenotypes and related 

expression profiles



Distances: Time-course

• you might want genes that are 
– correlated
– anti-correlated
– lagged

• 1-correlation is the correct distance only for 
the first one of these

• correlation measures linear association and 
is not resistant (one outlier can ruin it)
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Distances: Transcription Factors

• suppose that we can induce a specific 
transcription factor

• we might want to find all direct targets 
• does anyone know what the pattern of 

expression should be?
• use some known targets to help select a 

distance



Distances: Phenotype

• T-ALL can be classified according to their 
stage of differentiation (T1,T2,T3,T4)

• this is done on the basis of the detection of 
antigens on the surface of the cell

• these antigens can be directly associated 
with a gene

• look at the expression of those genes and 
use that to help find/select genes like the 
known ones



Multidimensional Scaling

• distance data is very high dimensional
• if we have N samples and G genes
• then distance between sample i and j is in G 

dimensional space
• this is very hard to visualize and hence 

methods that can reduce that dimensionality 
to two or three dimensions are interesting

• but only if they provide a reasonable 
reduction of the data



MDS
• three main ways of doing this

– classical MDS
– Sammon mapping

places more emphasis on smaller 
dissimilarities 

– Shepard-Kruskal non-metric scaling
based on the order of the distances not 
their values



MDS

• the quality of the representation in k
dimensions will depend on the magnitude of 
the first k eigenvalues.

• The data analyst should choose a value for k
that is small enough for ease representation 
but also corresponds to a substantial 
“proportion of the distance matrix 
explained”.



Classical MDS



Classical MDS
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MDS

• N.B. The MDS solution reflects not only the 
choice of a distance function, but also the features 
selected. 

• If features were selected to separate the data into 
two groups (e.g., on the basis of two-sample t-
statistics), it should come as no surprise that an 
MDS plot has two groups. In this instance MDS is 
not a confirmatory approach.
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Supervised Learning

• the general problem:

Identify mRNA expression patterns that 
reliably predict phenotype.



Supervised Learning: 4 Steps

1. feature selection: includes transformation, 
eg: log(x), x/y, etc

2. model selection: involves distance selection
3. training set: used to determine the model 

parameters
4. test set: should be independent of the 

training set and it is used to assess the 
performance of the classifier from Step 2



Supervised Learning: Goal

To identify a set of features, a predictor (classifier) 
and all parameters of the predictor so that if 
presented (with a new sample we can predict its 
class with an error rate that is similar to that 
obtained in Step 4).



Supervised Learning: Problems

• to reliably estimate the error rate will 
require an enormous sample (if it is small)

• therefore the test set is wasteful in practice; 
samples are expensive and valuable

• if there are lots of features we cannot hope 
to explore all possible variants

• there are too many models
• there are too many distances



A Simpler Goal

• we want some form of generalizability
• we want to select features and a model that 

are appropriate for prediction of new cases
(not looking for Mr. Right but rather Mr. 

NotTooWrong)
• and in a slightly different form:

all models are wrong, but some models are useful



Supervised Learning

• training error/prediction error: this is the 
error rate on the training sample 

• the training error is overly optimistic
• the test error/generalization error: is the 

error rate that will occur when a new 
independent sample is used (randomly 
chosen from the population of interest)



Supervised Learning

• there is sometimes benefit in considering 
class specific error rates

• some classes may be easy to predict and 
others hard

• especially if classes are not equally 
represented in the sample (or if we want to 
treat the errors differently)



Machine Learning: Mathematics

• Let Y denote the true class and X denote 
features chosen from the available set X

• Suppose that Y = f(X) + ε
• so the true class is some function f of the 

features plus some random error
• so we must extract X from X
• then estimate model parameters to get 
• finally get

f̂
)(ˆˆ Xfy =



Machine Learning: Mathematics

• the training set gives us observations for 
which we know both y and x – the true class 
and the features

• we select the parameters of the model so 
that we minimize (in some way) the errors

• e.g. we want to find functions that minimize

• there are an infinite number of functions 
that make this zero

( )2)(ˆ∑ − ii xfy



Supervised Learning

• so we must put some restrictions on the 
class of models that we will consider

• it is also worth observing at this time that 
model complexity is clearly an issue

• more complex models fit better 
• in any comparison of models it is essential 

that the complexity be adjusted for
• Occam’s Razor: we prefer simple 

explanations to complex ones



Supervised Learning

• bias: the difference between what is being 
predicted and the truth

• variance: the variability in the estimates
• generally low bias and low variance are 

preferred
• it is difficult to achieve this
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Supervised Learning

• The classifier can make one of three 
decisions:
– classify the sample according to one of the 

phenotypic groups
– doubt: it cannot decide which group
– outlier: it does not believe the sample belongs 

to any group



Supervised Learning

• Suppose that sample i has feature vector x
• The decision made by the classifier is called

and the true class is y
• We need to measure the cost of identifying 

the class as when the truth is y
• this is called the loss function
• the loss will be zero if the classifier is 

correct and something positive if it is not

)(ˆ xf

)(ˆ xf



Loss Functions

• loss functions are important concepts 
because they can put different weights on 
different errors

• for example, mistakenly identifying a 
patient who will not achieve remission as 
one who will is probably less of problem 
than the reverse – we can make that 
loss/cost much higher



Feature Selection

• in most of our experiments the features 
must be selected

• part of what we want to say is that we have 
found a certain set of features (genes) that 
can accurately predict phenotype

• in this case it is important that feature 
selection be included in any error estimation 
process



Classifiers

• k-NN classifiers – the predicted class for the 
new sample is that of the k-NNs

• doubt will be declared if there is not a 
majority (or if the number required is too 
small)

• outlier will be declared if the new sample is 
too far from the original data



k-NN Classifier
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k-NN

• larger values of k correspond to less 
complex models

• they typically have low variance but high 
bias

• small values of k (k=1) are more complex 
models

• they typically have high variance but low 
bias





Discriminant Analysis

• we contrast the k-NN approach with linear 
and quadratic discriminant analysis (lda, qda)

• lda seeks to find a linear combination of the 
features which maximizes the ratio of its 
between-group variance to its within group 
variance

• qda seeks a quadratic function (and hence is a 
more complex model)



QDA LDA



Cross-validation

• while keeping a separate test set is 
conceptually a good idea it is wasteful of 
data

• some sample reuse ideas should help us to 
make the most of our data without unduly 
biasing the estimates of the predictive 
capability of the model (if applied correctly)



Cross-validation

• the general principle is quite simple
– our complete sample is divided into two parts
– the model is fit on one part and the fit assessed 

on the other part
– this can be repeated many times; each time we 

get an estimate of the error rate
– the estimates are correlated, but that’s ok, we 

just want to average them



Cross-validation

• leave-one-out is the most popular
• each sample is left out in turn, then the 

model fit on the remaining N-1 samples
• the left out sample is supplied and its class 

predicted
• the average of the prediction errors is used 

to estimate the training error



Cross-validation

• this is a low bias (since N-1 is close to N we 
are close to the operating characteristics of 
the test) but high variance

• there are arguments that suggest leaving out 
more observations each time would be 
better

• the bias increases but may be more than 
offset but the reduction in variance



Cross-validation

• Uses include
• estimating the error rate
• model selection: try a bunch of models 

choose the one with the lowest cross-
validation error rate

• feature selection: select features that 
provide good prediction in most of the 
subsamples



General Comments

• there is in general no best classifier (there 
are some theorems in this regard)

• it is very important to realize that if one 
classifier works very poorly and you try a 
different classifier which works very well, 
then someone has probably made a mistake!

• the advantages to SVM or k-NN, for 
example, are not generally so large that one 
works and the other doesn’t 



Unsupervised Learning

• in statistics this is known as clustering
• in some fields it is known as class discovery
• the basic idea is to determine how many 

groups there are in your data and which 
variables seem to define the groupings

• the number of possible groups is generally 
huge and so some stochastic component is 
generally needed



What is clustering?

• Clustering algorithms are methods to divide 
a set of n observations into g groups so that 
within group similarities are larger than 
between group similarities

• the number of groups, g, is generally 
unknown and must be selected in some way

• implicitly we must have already selected 
both features and a distance!



Clustering

• the application of clustering is very much 
and art

• there are interactions between the distance 
being used and the method

• one difference between this and 
classification is that there is no training 
sample and the groups are unknown before 
the process begins

• unlike classification (supervised learning) 
there is no easy way to use cross-validation



Clustering

• class discovery: we want to find new and 
interesting groups in our data

• to do a good job the features, the distance 
and the clustering algorithm will have to be 
considered with some care

• the appropriate choices will depend on the 
questions being asked and the available data



Clustering

• probably some role for outlier
• any group that contained an outlier would 

probably have a large value for any measure 
of within cluster homogeneity 

• fuzzy clustering plays the role of doubt
– objects are assigned a weight (or probability of 

belonging to each cluster)



Clustering: QC

• one of the first things that a data analyst 
should do with normalized microarray data 
is to cluster the data

• the clusters should be compared to all 
known experimental features
– when the samples were assayed
– what reagents were used
– any batch effects 



Clustering: QC

• if the clusters demonstrate a strong 
association with any of these characteristics 
it will be difficult to interpret the data

• it is important, therefore, to design your 
experiment

• do not do all the type A samples on day 1 
and all the type B on day 2



Aside: Experimental Design

• do not randomly decide which day to do a 
sample

• instead you should block (and randomize 
within blocks) to ensure proper balance 
across all important factors

• e.g half of the A’s should be done on day 1 
and half on day 2, the same as for the B’s 
(but random assignment won’t give you that)



Clustering

Two (and a half) types:
• hierarchical – generate a hierarchy of 

clusters going from 1 cluster to n
• partitioning – divide the data into g groups 

using some (re)allocation algorithm
• fuzzy clustering: each object has a set of 

weights suggesting the probability of it 
belonging to each cluster 



Hierarchical Clustering

Two types
• agglomerative – start with n groups, join 

the two closest, continue
• divisive – start with 1 group, split into 2, 

then into 3,…, into n
• need both between observation distance and 

between group/cluster distance



Hierarchical Clustering

• between group distances
• single linkage – distance between two 

clusters is the smallest distance between an 
element of each group

• average linkage – distance between the two 
groups is the average of all pairwise
distances

• complete linkage – distance is the maximum



Hierarchical Clustering

• agglomerative clustering is not a good 
method to detect a few clusters

• divisive clustering is probably better
• divisive clustering is not deterministic (as 

implemented)
• the space of all possible splits is too large 

and we cannot explore all
• so we use some approximations



Hierarchical Clustering

• agglomerative: start with all objects in their 
own cluster then gradually combine the 
closest to

• many ways to do this but there is an exact 
solution

• divisive: start with all objects in the same 
group, split into two, then three, then…until 
n



Dendrograms

• the output of a hierarchical clustering is 
usually presented as a dendrogram

• this is a tree structure with the observations 
at the bottom (the leafs)

• the height of the join indicates the distance 
between the left branch and the right branch



Dendrograms

• dendrograms are NOT visualization methods
• they do not reveal structure in data they 

impose structure on data
• the cophenetic correlation can be used to 

assess the degree to which the dendrogram 
induced  distance agrees with the the distance 
measure used to compute the dendrogram
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Dendrograms

• the cophenetic correlation can help to 
determine whether the distances represented 
in the dendrogram reflect those used to 
construct it

• even if this correlation is high that is no 
guarantee that the dendrogram represents 
real clusters 
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• the dendrogram was 
cut to give three 
groups

0110AML

710ALL T-cell

0217ALL B-cell

321Group
Average Linkage
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321Group
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Divisive Clustering



Partitioning Methods

• the other broad class of clustering 
algorithms are the partitioning methods

• the user selects some number of groups, g
• group or cluster centers are determined and 

objects are assigned to some set of initial 
clusters

• some mechanism for moving points and 
updating cluster centers is used



Partitioning Methods

• many different methods for doing this but 
the general approach is as follows:

• select the number of groups, G
• divide the samples into G different groups 

(randomly)
• iteratively select observations and 

determine whether the overall gof will be 
improved by moving them to another group



Partitioning

• this algorithm is then applied to the data 
until some stopping criterion is met

• the solution is generally a local optimal not 
necessarily a global optimal

• the order in which the samples are 
examined can have an effect on the outcome

• this order is generally randomly selected



Partitioning Methods

• among the most popular of these methods 
are
– k-Means
– PAM
– self-organizing maps



Partitioning Methods

• pam: partitioning around mediods
• cluster centers are actual examples 
• we define a distance between samples and 

how many groups 
• then we apply pam which sequentially 

moves the samples and updates the centers



PAM – ALL/AML

• pam was applied to the data from Golub et 
al.

• the results (for three groups) were:

1100AML

080ALL T-cell

1018ALL B-cell

321Group
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PAM

• the next plot is called a silhouette plot
• each observation is represented by a 

horizontal bar
• the groups are slightly separated
• the length of a bar is a measure of how 

close the observation is to its assigned 
group (versus the others)
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Silhouette plot of pam(x = as.dist(d), k = 3, diss = TRUE)

Average silhouette width :  0.53
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2 :   8  |  0.54

3 :   12  |  0.73



How Many Groups do I have?

• this is a hard problem
• there are no known reliable answers
• you need to define more carefully what you 

mean by a group
• the next two slides ask whether there are 

four groups in the ALL/AML data
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How Many Groups

• for microarray experiments the question has 
often been stated more in terms of the 
samples by genes, false color displays

• there one is interested in finding relatively 
large blocks of genes with relatively large 
blocks of samples where the expression 
level is the same for all

• this is computationally very hard



Clustering Genomic Data

• in my examples (and in most applications I 
am aware of) I simply selected genes that 
looked like they differentiated the two 
major groups

• I could also do clustering on all 3,000-odd 
genes

• I could select genes according to pathway or 
GO category or … and do a separate 
clustering for each



Clustering Genomic Data

• it seems to me that there is a lot to be gained 
from thinking about the features and trying 
to use some known biology

• using subsets of the features rather than all 
of them to see whether there are interesting 
groups could be quite enlightening

• this requires collaboration between 
biologists and statisticians



Clustering

• one of the biggest problems here is a lack of 
a common interface

• many different software programs all are 
slightly different

• many tools are not yet implemented
• this is changing as both computational 

biology and data mining have spurred an 
interest in this field



Feature Selection

• this is perhaps the hardest part of the 
machine learning process

• it is also very little studied and there are few 
references that can be used for guidance

• the field of data-mining offers some 
suggestions



Feature Selection

• in most problems we have far too many 
features and must do some reduction

• for our experiment many of the genes may 
not be expressed in the cell type under 
examination

• or they may not be differentially expressed 
in the phenotype of interest



Feature Selection

• non-specific feature selection is the process 
of selecting features that show some 
variation across our samples without regard 
to phenotype

• for example we could select genes that 
show a certain amount of variability



Feature Selection

• specific feature selection is the process of 
selecting features that align with or predict a 
particular phenotype

• for example we may select features that 
show a large fold change when comparing 
two groups of interest (patients in remission 
versus those for whom cancer has returned)



Feature Selection

• most feature selection is done univariately
• most models are multivariate
• we know, from the simplest setting, that the 

best two variable model may not contain the 
best single variable

• improved methods of feature selection are 
badly needed



Feature Selection: CV

• there are two different ways to consider 
using CV for feature selection

• have an algorithm for selecting features
• obtain M different sets of features
• for each set of features (with the distance 

and model fixed) compute the CV error
• select the set of features with the smallest 

error



Feature Selection: CV

• a different method is to put the feature 
selection method into the algorithm

• for each CV subset perform feature 
selection

• predict those excluded
• could select those features that were 

selected most often



Feature Selection: CV

• a slight twist would be to weight the 
features according to the subsample 
prediction error

• give those features involved in models that 
had good predictive capabilities higher

• select the features with the highest 
combined weight



Feature Selection

• if we want to find those features which best 
predict the duration of remission we must 
also use supervised learning (classification) 
to predict duration of remission

• then we must use some method for 
determining which features provide the best 
prediction

• we will return to this interesting question a 
bit later



Some References
• Classification, 2nd ed., A. D. Gordon, Chapman 

& Hall (it’s about clustering), 1999
• Pattern Recognition and Neural Networks, B. 

D. Ripley, Cambridge Univ. Press, 1996
• The Elements of Statistical Learning, T. Hastie, 

R. Tibshirani, J. Friedman, Springer, 2001
• Pattern Classification, 2nd ed., R. Duda, P. Hart 

and D. Stork, Wiley, 2000.
• Finding Groups in Data, L. Kaufman and P. J. 

Rousseeuw, Wiley, 1990.



Neural Networks

• a mechanism for making predictions
• they can be arbitrarily complex (some 

caution must be used when comparing to 
other methods)

• consist of a set of nodes arranged in layers



Neural Network

Hidden Layer OutputInput



Neural Networks

• each node (unit) sums its inputs, adds a 
constant to form the total input

• a node specific function function fk() is then 
applied to the total input to yield the total 
output

• the output then becomes the input for the 
next layer

• the output from the final layer constitutes 
the prediction
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Neural Networks
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Neural Networks
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Neural Networks

• for a unit k we assume the output is given 
by

• to be useful we need to obtain values for the 
wij 

• this is difficult and is usually based on the 
use of a training set
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Neural Networks

• convergence is difficult to assess: even 
when you have an independent test set

• it seems that one seldom needs more than 
one hidden layer to accommodate the 
problems we are encountering with 
microarrays

• more hidden layers imply a more complex 
model
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