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Exploratory data analysis/unsupervised learning

❍ “Look at the data”; identify structures in the data and visualize
them.

❍ Can we see biological/experimental parameters; are there
outliers?

❍ Find groups of genes and/or samples sharing similarity.

❍ Unsupervised learning: The analysis makes no use of
gene/sample annotations.



Clustering

Aim: Group objects according to their similarity.
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Clustering gene expression data

❍ Clustering can be applied to rows (genes) and/or columns
(samples/arrays) of an expression data matrix.

❍ Clustering may allow for reordering of the rows/columns of
an expression data matrix which is appropriate for visualization
(heatmap).



Clustering genes

Aims:

❍ identify groups of co-regulated genes

❍ identify typical spatial or temporal expression patterns (e.g. yeast
cell cycle data)

❍ arrange a set of genes in a linear order which is at least not
totally meaningless



Clustering samples

Aims:

❍ detect experimental artifacts/bad hybridizations (quality control)

❍ check whether samples are grouped according to known
categories (meaning that these are clearly visible in terms of gene
expression)

❍ identify new classes of biological samples (e.g. tumor subtypes)



Clustering: Distance measures

❍ Aim: Group objects according to their similarity.

❍ Clustering requires a definition of distance between the objects,
quantifying a notion of (dis)similarity. After this has been specified,
a clustering algorithm may be applied.

❍ The result of a cluster analysis may strongly depend on the
chosen distance measure.



Metrics and distances

A metric d is a function satisfying:

1. non-negativity: d(a, b) ≥ 0;

2. symmetry: d(a, b) = d(b, a);

3. d(a, a) = 0.

4. definiteness: d(a, b) = 0 if and only if a = b;

5. triangle inequality: d(a, b) + d(b, c) ≥ d(a, c).

A function only satisfying 1.-3. is called a distance.



Distance measures: Examples

Vectors x = (x1, . . . , xn),y = (y1, . . . , yn)

❍ Euclidean distance: dM(x,y) =
√∑n

i=1(xi − yi)2

❍ Manhattan distance: dE(x,y) =
∑n

i=1 |xi − yi|

❍ One minus Pearson correlation:

dC(x,y) = 1−
∑n

i=1(xi − x̄)(yi − ȳ)
(
∑n

i=1(xi − x̄)2)1/2(
∑n

i=1(xi − x̄)2)1/2



Distance measures/standardization

❍ The correlation distance is invariant wrt shifting and scaling of
its arguments:

dC(x,y) = dC(x, ay + b), a > 0.

❍ One may apply standardization to observations or variables:

x 7→ x− x̄

σ(x)
,

❍ The correlation distance and the Euclidean distance between
standardized vectors are closely related:

dE(x,y) =
√

2ndC(x,y).



Distances between clusters

Extend a distance measure d to a measure of distance between
clusters.
❍ Single linkage The distance between two clusters is the minimal
distance between two objects, one from each cluster.
❍ Average linkage The distance between two clusters is the
average of the pairwise distance between members of the two
clusters.
❍ Complete linkage The distance between two clusters is the
maximum of the distances between two objects, one from each
cluster.
❍ Centroid linkage The distance between two clusters is the
distance between their centroids.



Hierarchical clustering

❍ Build a cluster tree/dendrogram, starting from the individual
objects as clusters.

❍ In each step, merge the two clusters with the minimum distance
between them - using one of the above linkage principles.

❍ Continue until everything is in one cluster.

❍ If you want a partition of the set of objects, cut the tree at a
certain height.

❍ R function hclust in package mva.



Hierarchical clustering, example

Golub data, 150 genes with highest variance
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k-means clustering

❍ User specifies the number k of desired clusters. Input: Objects
given as vectors in n-dimensional space (Euclidean distance is
used).

❍ For an initial choice of k cluster centers, each object is assigned
to the closest of the centers.

❍ The centroids of the obtained clusters are taken as new cluster
centers.

❍ This procedure is iterated until convergence.



How many clusters?

❍ Many methods require the user to specify the number of clusters.
Generally it is not clear which number is appropriate for the data at
hand.

❍ Several authors have proposed criteria for determining the
number of clusters, see Dudoit and Fridlyand 2002.

❍ Sometimes there may not be a clear answer to this question -
there may be a hierarchy of clusters.



Which scale, which distance measure to use for
clustering?

❍ Data should be normalized and transformed to appropriate scale
before clustering (log or generalized log (R package vsn )).

❍ Clustering genes: Standardization of gene vectors or the use
of the correlation distance is useful when looking for patterns of
relative changes - independent of their magnitude.

❍ Clustering samples: Standardizing genes gives relatively
smaller weight for genes with high variance across the samples
- not generally clear whether this is desirable.

❍ Gene filtering (based on intensity/variability) may be reasonable
- also for computational reasons.



Some remarks on clustering

❍ A clustering algorithm will always yield clusters, whether the data
are organized in clusters or not.

❍ The bootstrap may be used to assess the variability of a
clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

❍ If a class distinction is not visible in cluster analysis, it may still
be accessible for supervised methods (e.g. classification).



Visualization of similarity/distance matrices

Matrix of correlation coefficients, rows/columns ordered by array
batch.



Projection methods

❍ Map the rows and/or
columns of the data matrix
to a plane such that similar
rows/columns are located
close to each other.

❍ Different methods (principal
component analysis,
multidimensional scaling,
correspondence analysis) use
different notions of similarity.
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Principal component analysis
❍ Imagine k observations (e.g. tissue samples) as points in n-
dimensional space (here: n is the number of genes).
❍ Aim: Dimension reduction while retaining as much of the
variation in the data as possible.
❍ Principal component analysis identifies the direction in this
space with maximal variance (of the observations projected onto
it).
❍ This gives the first principal component (PC). The i + 1st PC is
the direction with maximal variance among those orthogonal to the
first i PCs.
❍ The data projected onto the first PCs may then be visualized in
scatterplots.



Principal component analysis

❍ PCA can be explained in terms of the eigenvalue decomposition
of the covariance/correlation matrix Σ:

Σ = SΛSt,

where the columns of S are the eigenvectors of Σ (the principal
components), and Λ is the diagonal matrix with the eigenvalues
(the variances of the principal components).

❍ Use of the correlation matrix instead of the covariance matrix
amounts to standardizing variables (genes).

❍ R function prcomp in package mva



PCA, Golub data
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Multidimensional scaling

❍ Given an n x n dissimilarity matrix D = (dij) for n objects
(e.g. genes or samples), multidimensional scaling (MDS) tries to
find n points in Euclidean space (e.g. plane) with a similar distance
structure D′ = (d′

ij) - more general than PCA.
❍ The similarity between D and D′ is scored by a stress function.
❍ Least-squares scaling: S(D,D′) = (

∑
(dij − d′

ij)
2)1/2.

Corresponds to PCA if the distances are Euclidean.
In R: cmdscale in package mva.
❍ Sammon mapping: S(D,D′) =

∑
(dij − d′

ij)
2/dij. Puts more

emphasis on the smaller distances being preserved.
In R: sammonin package MASS.



Projection methods: feature selection

❍ The results of a projection method also depend on the features
(genes) selected.

❍ If those genes are selected that discriminate best between two
groups, it is no wonder if they appear separated.

❍ This may also happen if there is no real difference between the
groups.



Projection methods: feature selection
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discrimination between red and black (t-statistic).



Correspondence analysis:
Projection onto plane

genes

samples



Correspondence analysis:
Properties of projection

• Similar row/column
profiles (small χ2-
distance) are projected
close to each other.

• A gene with
positive/negative
association with a
sample will lie in the
same/opposite direction
from the centroid.



Projection methods: Correspondence analysis

❍ Correspondence analysis is usually applied to tables of
frequencies (contingency tables) in order to show associations
between particular rows and columns – in the sense of deviations
from homogeneity, as measured by the χ2-statistic.

❍ Data matrix is supposed to contain only positive numbers - may
apply global shifting to achieve this.

❍ R packages CoCoAn, multiv .



Correspondence analysis - Example

Golub data
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Contingency table of differentially expressed genes



Correspondence analysis
Association between Gene Ontology categories and tissue/disease phenotypes
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ISIS - a class discovery method

❍ Aim: detect subtle class distinctions among a set of tissue
samples/gene expression profiles (application: search for disease
subtypes)

❍ Idea: Such class distinctions may be characterized by differential
expression of just a small set of genes, not by global similarity of
the gene expression profiles.

❍ The method quantifies this notion and conducts a search for
interesting class distinctions in this sense.

❍ R package ISIS available at
http://www.molgen.mpg.de/˜heydebre
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