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4x4, 8x4, or 12x 4 
sectors

17...38 rows and 
columns per sector

ca. 4000…46000
probes/array

sector: corresponds 
to one print-tip

A microarray slide (spotted)
Slide: 25x75 mm

Spot-to-spot: ca. 150-350 µm



Affymetrix oligonucleotide chips

25Oligonucleotide 
length

11No. probe pairs per 
target sequence

600,000No. probes
11µmFeature size

hgU133plus2.0



Agilent oligonucleotide chips

60Oligonucleotide length
44,000No. probes
≈100µmFeature size

whole human genome kit (5/2004)



Terminology
sample: RNA (cDNA) hybridized to the array, aka 

target, mobile substrate.
probe: DNA spotted on the array, aka spot, 

immobile substrate.
sector: rectangular matrix of spots printed using 

the same print-tip (or pin), aka print-tip-group
plate: set of 384 (768) spots printed with DNA 

from the same microtitre plate of clones
slide, array
channel: data from one color (Cy3 = cyanine 3 = 

green, Cy5 = cyanine 5 = red).
batch: collection of microarrays with the same 

probe layout.



Image Analysis
scanner signal

resolution:
5 or 10 mm spatial, 
16 bit (65536) dynamical per channel

ca. 30-50 pixels per probe (60 µm spot size)
40 MB per array
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Image Analysis
scanner signal

resolution:
5 or 10 mm spatial, 
16 bit (65536) dynamical per channel

ca. 30-50 pixels per probe (60 µm spot size)
40 MB per array

Image Analysis

spot intensities
2 numbers per probe (~100-300 kB)
… auxiliaries: background, area, std dev, …
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Image analysis

2. Segmentation. Classify pixels 
as foreground (signal) or 
background. 

3. Information extraction. For 
each spot on the array and each 
dye

• foreground intensities;
• background intensities; 
• quality measures.

R and G for each spot on the array.

1. Addressing. Estimate 
location of spot centers.



Segmentation

adaptive segmentation
seeded region growing

fixed circle segmentation

Spots may vary in size and shape.



Local background

---- GenePix

---- QuantArray

---- ScanAlyze
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Local background estimation by 
morphological opening

Image is probed with a window (aka structuring 
element), eg, a square with side length about twice 
the spot-to-spot distance.

Erosion: at each pixel, replace its value by the 
minimum value in the window around it.

Dilation: same with maximum

followed by

Do this separately for red and green images. This 
'smoothes away' all structures that are smaller 
than the window

⇒ Image of the estimated background



What is (local) background? 
usual assumption:

total brightness = 
background brightness (adjacent to spot)

+ brightness from labeled sample cDNA
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Affymetrix files
Main software from Affymetrix: 

MAS - MicroArray Suite.
DAT file: Image file, ~10^7 pixels, ~50 
MB.

CEL file: probe intensities, ~500,000 
numbers

CDF file: Chip Description File. Describes 
which probes go in which probe sets 
(genes, gene fragments, ESTs).



Image analysis
DAT image files CEL files
Each probe cell: 10x10 pixels.
Gridding: estimate location of probe cell 

centers.
Signal: 

– Remove outer 36 pixels 8x8 pixels.
– The probe cell signal, PM or MM, is the 
75th percentile of the 8x8 pixel values.

Background: Average of the lowest 2% probe 
cells is taken as the background value and 
subtracted.

Compute also quality values.



Quality measures
Spot quality

– Brightness: foreground/background ratio
– Uniformity: variation in pixel intensities and ratios 

of intensities within a spot
– Morphology: area, perimeter, circularity.

Slide quality
– Percentage of spots with no signal
– Range of intensities
– Distribution of spot signal area, etc.

How to use quality measures in subsequent 
analyses?



spot intensity dataspot intensity data

two-color spotted arrays

Pr
ob

es
 (
ge

ne
s)

n one-color arrays 
(Affymetrix, nylon)

conditions (samples)



Which genes are differentially transcribed?

same-same tumor-normal

log-ratio



ratios and fold changes
Fold changes are useful to describe 
continuous changes in expression

1000
1500

3000
x3

x1.5

A B C

0
200

3000
?

?

A B C

But what if the gene is “off” (below 
detection limit) in one condition?



ratios and fold changes
The idea of the log-ratio (base 2)

0: no change
+1: up by factor of 21 = 2
+2: up by factor of 22 = 4
-1: down by factor of 2-1 = 1/2
-2: down by factor of 2-2 = ¼
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ratios and fold changes
The idea of the log-ratio (base 2)

0: no change
+1: up by factor of 21 = 2
+2: up by factor of 22 = 4
-1: down by factor of 2-1 = 1/2
-2: down by factor of 2-2 = ¼

A unit for measuring changes in expression: assumes that 
a change from 1000 to 2000 units has a similar biological 
meaning to one from 5000 to 10000.

What about a change from 0 to 500?
- conceptually
- noise, measurement precision



Raw data are not mRNA concentrations

o other array 
manufacturing-
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efficiency and 
specificity

o DNA-support 
binding

o reverse 
transcription 
efficiency

o ‘background’ 
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o spotting 
efficiency

o amplification 
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o signal 
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o PCR yield, 
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o RNA 
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o image 
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o tissue 
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Raw data are not mRNA concentrations

o other array 
manufacturing-
related issues

o hybridization 
efficiency and 
specificity

o DNA-support 
binding

o reverse 
transcription 
efficiency

o ‘background’ 
correction

o spotting 
efficiency

o amplification 
efficiency

o signal 
quantification

o PCR yield, 
contamination

o RNA 
degradation

o image 
segmentation

o clone 
identification and 
mapping

o tissue 
contamination

The problem is less that these 
steps are ‘not perfect’; it is 
that they may vary from array 
to array, experiment to 
experiment.
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Error models

Definition:
description of the possible outcomes of a 
measurement

Depends on:
-true value of the measured quantity 
(abundances of specific molecules in biological sample)

-measurement apparatus 
(cascade of biochemical reactions, optical detection 
system with laser scanner or CCD camera)



Error models

Purpose:

1.statistical inference (appropriate 
parametric methods have better power)

2.summarization (summary statistic instead 
of full empirical distribution)

3.quality control



Derivation of additive-multiplicative 
error model

y = f(x,u)
y measurement

f measurement apparatus

x true underlying quantity

u further factors that can influence the 
measurement (“environment”)
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Parameterization

(1 )y a b x
y a b x eη

ε η

ε

= + + ⋅ ⋅ +

= + + ⋅ ⋅

two practically 
equivalent forms 

(η<<1)

iid per arrayiid in whole 
experiment

η random gain 
fluctuations

array x color x
print-tip group 

array x colorb systematic gain 
factor

iid per arrayiid in whole 
experiment

ε random 
background

array x color x
print-tip group 

same for all 
probes per array x
color

a systematic 
background



Important issues for model fitting
Parameterization

variance vs bias

"Heteroskedasticity" (unequal variances)
⇒ weighted regression or variance stabilizing

transformation

Outliers
⇒ use a robust method 

Algorithm
If likelihood is not quadratic, need non-linear 

optimization. Local minima / concavity of 
likelihood?



The two-component model

raw scale log scale
B. Durbin, D. Rocke, JCB 2001



The two-component model

raw scale log scale
B. Durbin, D. Rocke, JCB 2001

“additive” noise

“multiplicative” noise



Nesting

(1 )
' ' ' (1 ')

'' '' '' (1 '')

y a b x
x a b z

y a b z

ε η
ε η

ε η
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= + + ⋅ ⋅ +

⇓
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e.g. replicate 
hybridization

e.g. replicate 
RNA isolation

overall



variance stabilization

Xu a family of random variables with 
EXu=u, VarXu=v(u). 

Define

⇒ var f(Xu ) ≈ independent of u

1( )
v( )

x

f x du
u

= ∫

derivation: linear approximation
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variance stabilizing transformations
1( )

v ( )

x

f x d u
u

= ∫
1.) constant variance ( ) constv u f u= ⇒ ∝

2.) const. coeff. of variation 2( ) logv u u f u∝ ⇒ ∝

3.) offset 2
0 0( ) ( ) log( )v u u u f u u∝ + ⇒ ∝ +

4.) microarray

2 2 0
0( ) ( ) arsinh u uv u u u s f

s
+

∝ + + ⇒ ∝



the arsinh transformation

- - - log u

——— arsinh((u+uo)/c)

( )
( )

2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
→∞

= + +

− − =

intensity
-200 0 200 400 600 800 1000



the transformed model

2

Yarsinh

(0, )

siki
k ki

si

ki

a
b

N c

µ ε

ε

−
= +

:

i: arrays 
k: probes
s: probe strata (e.g. print-tip, region)
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profile log-likelihood

,
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Here:



Least trimmed sum of squares regression

0 2 4 6 8
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- least sum of squares (LS): Gauss, Legendre ~ 1790
- least trimmed sum of squares (LTS): Rousseeuw 1984

x

f(x) = 
a+bx



evaluation: effects of different data transformations
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raw scale log glog

difference

log-ratio

generalized 

log-ratio

glog

constant part
variance:

proportional part



Motivation for the generalized log-ratio

= −

≈

−−
⇒ = −

1 2 2 1

1 2

1
1 2

( ) ( , ) ( , )
( ) Var( ( , )) const.

( , ) inh( ) inh( )s

i h z z h z z
ii h z z

z az ah z z as as
b b

z1, z2 ~ additive-multiplicative error model
Search function h that fulfills



Properties of the generalized log-ratio

− −
= −

= − − −

1 2
1 2

1 2 1 2

( , ) inh( ) inh( )

( , ) log( ) log( )

z a z ah z z as as
b b

q z z z a z a

(i) for z1, z2>>a,  h and q  are the same

(ii) |h(z1, z2)| ≤ |q(z1, z2)|

(iii) exp(h(z1, z2)) is a shrinkage 
estimator for fold-change



Properties of the generalized log-ratio

zi=a+ε+bxi exp(η)   

x2=0.5…15, x1=2 x2, a=0, σa=1, b=1, σb=0.1



Properties of the generalized log-ratio

zi=a+ε+bxi exp(η)   

x2=0.5…15, x1=2 x2, a=0, σa=1, b=1, σb=0.1

Variance-Bias 
Tradeoff



Summary

log-ratio

'generalized' log-ratio

o advantages of variance-stabilizing data-transformation: 
generally better applicability of statistical methods 
(hypothesis testing, ANOVA, clustering, classification…)

o R package vsn

1 21 2

1 2

Y Yarsinh arsinhk ka a
b b
− −

−

1 21 2

1 2

Y Ylog logk ka a
b b
− −

−



“Single color normalization”

n red-green arrays (R1, G1, R2, G2,… Rn, Gn)

within/between slides
for (i=1:n)

calculate Mi= log(Ri/Gi), Ai= ½ log(Ri*Gi)
normalize Mi vs Ai

normalize M1…Mn 

all at once
normalize the matrix of (R, G)
then calculate log-ratios or any other 

contrast you like



How to compare and assess different 
‘preprocessing’ methods

Normalization = correction for systematic 
experimental biases + provision of an expression 
value that can be used subsequently for testing, 
clustering, classification, modelling.

Quality trade-off: the better the measurements, 
the less normalization

Variance-Bias trade-off: how do you weigh 
measurements that have low signal-noise ratio?



How to compare and assess different 
‘normalization’ methods?

Normalization :=
1. correction for systematic experimental biases
2. provision of expression values that can subsequently be 
used for testing, clustering, classification, modelling…
3. provision of a measure of measurement uncertainty

Quality trade-off: the better the measurements, the less 
need for normalization. Need for “too much” normalization 
relates to a quality problem.

Variance-Bias trade-off: how do you weigh measurements 
that have low signal-noise ratio?
- just use anyway
- ignore
- shrink



How to compare and assess different 
‘normalization’ methods?

Aesthetic criteria
Logarithm is more beautiful than arsinh

Practical critera
It takes forever to run vsn. Referees will only accept my 
paper if it uses the original MAS5.

Silly criteria
The best method is that that makes all my scatterplots 
look like straight, slim cigars

Physical criteria
Normalization calculations should be based on 
physical/chemical model

Economical/political criteria
Life would be so much easier if everybody were just using 
the same method, who cares which one



How to compare and assess different 
‘normalization’ methods?

Comparison against a ground truth
But you have millions of numbers – need to choose the 
metric that measures deviation from truth.
FN/FP: do you find all the differentially expressed genes, 
and do you not find  non-d.e. genes?
qualitative/quantitative: how well do you estimate 
abundance, fold-change?

Spike-In and Dilution series
… great, but how representative are they of other data?

Implicitely, from resampling the actual experiment of 
interest
… but isn’t that too much like Munchhausen?



evaluation: a benchmark for Affymetrix 
genechip expression measures

o Data:
Spike-in series: from Affymetrix 59 x HGU95A, 
16 genes, 14 concentrations, complex background
Dilution series: from GeneLogic 60 x HGU95Av2,
liver & CNS cRNA in different proportions and amounts

o Benchmark:
15 quality measures regarding
-reproducibility
-sensitivity 
-specificity 
Put together by Rafael Irizarry (Johns Hopkins)
http://affycomp.biostat.jhsph.edu



evaluation: a benchmark for Affymetrix 
genechip expression measures

o Package affycomp (on Bioconductor)

o Online competition, accepts contributions via 
webserver



affycomp results  
good

bad



ROC curves



Limitations

Affymetrix preprocessing involves
(1) PM,MM-synthesis
(2) calibration, transformation
(3) probe set summarization

‘vsn-scal’ used
(1) ignore MM
(2) vsn
(3) medianpolish (as in RMA, similar to dChip)

This can be improved
(1) use MM! (but just not simply PM-MM)
(2) stratify by physical probe properties



Resampling method: sensitivity / specificity in 
detecting differential abundance

o Data: paired tumor/normal tissue from 19 kidney 
cancers, in color flip duplicates on 38 cDNA slides 
à 4000 genes.

o 6 different strategies for normalization and 
quantification of differential abundance

o Calculate for each gene & each method: 
t-statistics, permutation-p

o For threshold α, compare the number of genes 
the different methods find, #{pi | pi≤α}



sensitivity vs specificity

one-sided test for up one-sided test for down



Summary

Measuring microarray data is a complex chain of 
biochemical reactions and physical measurements.

Systematic and stochastic errors

Calibration and error models

Parameter estimation

Getting preprocessing right is prerequisite for getting 
reasonable results in the end

Improving preprocessing is just like any other 
technology improvement

How to choose from the plethora of methods?



What’s next

Exercises on data import, diagnostic plots, 
quality criteria, comparing normalization 
methods

Lecture on quality control, probe set 
summaries, hybridization physics



Thank you


