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Two Types of Data:
Pairwise Protein Relationships

• AP-MS (Affinity Purification - Mass Spectrometry )

– Measures Complex Comembership
• Gavin, et al.  (Nature, 2002)

– TAP : Tandem Affinity Purification 
• Ho, et al.  (Nature, 2002)

– HMS-PCI: High-throughput Mass Spectromic Protein Complex 
Identification

• Y2H (Yeast Two Hybrid)

– Measures Physical Interactions
• Ito, et al. (PNAS, 1998)
• Uetz, et al. (Nature, 2000)



AP-MS

Y2H

Abd1=YBR236C
YOR128C=Ade2
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AP-MS data: Y2H data:

We want to estimate the 
bipartite protein complex 
membership graph, A:

*Estimation of A requires 
estimation of K, the number 
of complexes.



Existing analyses of AP-MS data
• Gavin, et al.

– Functional organization of the yeast proteome by systematic 
analysis of protein complexes (Nature 2002)

• Purifications grouped together based on significant overlap (p.143)

• Bader and Hogue 
– Analyzing Yeast Protein-Protein Interaction Data Obtained from 

Different Sources (Nature Biotechnology, 2002)
– An Automated Method for Finding Molecular Complexes in Large 

Protein Interaction Networks (Bioinformatics 2003)
• Works within the realm of pairwise interactions without recognition of 

the bipartite graph structure for complex membership
• “Spoke” and “Matrix” models
• Treat AP-MS data as “hypothetical pairwise interactions”

• Jansen, et al. 
– A Bayesian Networks Approach for Predicting Protein-Protein 

Interactions from Genomic Data (Science 2003)
• Deals with pairwise complex comemberships, not comprehensive 

complex membership



Four Unique Aspects to our Algorithm

1. Some proteins participate in more than one complex

2. In an AP-MS experiment, some proteins are used as baits 
and some proteins are only ever found as hits

3. Graph theoretic paradigm to allow for succinct expression of 
constructs involved 

• Bipartite graph for complex membership (A)
• Relationship of complex membership (A) to complex comembership (Y) assayed in 

an AP-MS experiment (Z)
• AP-MS and Y2H are different technologies that measure different relationships 

between proteins 

4. Statistical paradigm to allow for false positive and false 
negative observations 
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experiment. Y is assayed by 
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constructs involved 

•Relationship of 
complex membership 
(A) to complex
comembership (Y) 
assayed in an AP-MS 
experiment (Z)

Y represents “ideal” complex 
comembership observations 
from perfectly sensitive and 
perfectly specific AP-MS 
technology.  Y depends on 
the baits that are used in an 
experiment. Y is assayed by 
AP-MS technology.

The Connection: Maximal BH-Complete Subgraphs
BH-Complete Subgraph: set of n bait nodes and m hit-only nodes for which 

all n(n-1)+nm directed edges exist
Maximal BH-Complete Subgraph: BH-complete subgraph that is not 

contained in any other complete subgraph
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observations using  
AP-MS technology.



4. Statistical paradigm 
to allow for false 
positive and false 
negative observations

Z represents actual 
observations using  
AP-MS technology.

We will look for 
sets of proteins 
that form maximal
BH-complete 
subgraphs with an
allowance for false 
positive and false 
negative 
observations.  



Our Goal

• for any (every) organism or tissue type 
we want to estimate the complex 
membership graph

• that is, the bipartite graph where one set 
of nodes are all proteins and the other 
are all complexes

• we are limited by the experimental data, 
experimental techniques and models
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In summary…

We start with an initial estimate for A, and then refine that 
estimate according to a two component probability measure:

P(Z|A,µ,α)=L(Z|Y=A⊗A’,µ,α)C (Z|A,µ,α)



P(Z|A,µ,α)=L(Z|Y=A⊗A’,µ,α)C (Z|A,µ,α)

∏ ∏∏ ∏
=

−
+

+==

−

≠=

−−=⊗
N

l

Z
lm

MN

Nm

Z
lm

N

i

Z
ij

N

ijj

Z
ij

lmlmijij ppppαµAAZL
1

)1(

11

)1(

,1

)1()1(),,'|(

L is the usual likelihood for independent Bernoulli observations of the 
existence of an edge under a logistic regression model with user-specified
values of µ and α.

doubly tested edges singly tested edges

αµ

αµ

µ

µ

ij
ij

ij
ijijij

ee

Yαµ
p

p
YαµZp

+

+

+
=

+
=

+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
==

1
eyspecificit,

1
ey sensitivit

1
logand   ),,,|1Pr(



P(Z|A,µ,α)=L(Z|Y=A⊗A’,µ,α)C (Z|A,µ,α)

∏ ∏∏ ∏
=

−
+

+==

−

≠=

−−=⊗
N

l

Z
lm

MN

Nm

Z
lm

N

i

Z
ij

N

ijj

Z
ij

lmlmijij ppppαµAAZL
1

)1(

11

)1(

,1

)1()1(),,'|(

L is the usual likelihood for independent Bernoulli observations of the 
existence of an edge under a logistic regression model with user-specified
values of µ and α.

doubly tested edges singly tested edges

αµ

αµ

µ

µ

ij
ij

ij
ijijij

ee

Yαµ
p

p
YαµZp

+

+

+
=

+
=

+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
==

1
eyspecificit,

1
ey sensitivit

1
logand   ),,,|1Pr(

Using L, we can estimate Yij= 0 or 1 for i=1,…,N and j=1,…,N+M.  For i=j, Yij=Yji.



P(Z|A,µ,α)=L(Z|Y=A⊗A’,µ,α)C (Z|A,µ,α)

Assumptions for µ and α in our analyses:

1) Pr(Zij=0| µ,α,Yij=0)>.5  and Pr(Zij=1| µ,α,Yij=1)>.5
-sensitivity and specificity are greater than .5

2) Pr(Zij=0| µ,α,Yij=1)> Pr(Zij=1| µ,α,Yij=0)
-false negative probability is greater than false positive probability

Under these assumptions for µ and α, L is easily maximized.  

For singly tested bait-hit pairs,

For doubly tested bait-bait pairs,

.ˆ
ijij ZY =

).,max()ˆ,ˆ( jiijjiij ZZYY =
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Assumptions for µ and α in our analyses:

1) Pr(Zij=0| µ,α,Yij=0)>.5  and Pr(Zij=1| µ,α,Yij=1)>.5
-sensitivity and specificity are greater than .5

2) Pr(Zij=0| µ,α,Yij=1)> Pr(Zij=1| µ,α,Yij=0)
-false negative probability is greater than false positive probability

Under these assumptions for µ and α, L is easily maximized.  

For singly tested bait-hit pairs,

For doubly tested bait-bait pairs,

.ˆ
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).,max()ˆ,ˆ( jiijjiij ZZYY =

We have an estimate for Y, but our goal is to estimate A.  
We use the transformation Y=A⊗A’ and maximal BH-complete subgraphs.



Given Y, What is A? Identifiability
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A is identifiable if it assumed 
to consist of maximal 
subgraphs of Y.  I.e., given the 
Y above, we would find the 
“one trimer” version of A.
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Since we only use a subset of 
the proteins as baits, we 
cannot identify maximal 
complete subgraphs in Y.  
Instead, the initial estimate of 
A based on Y consists of the 
maximal BH-complete 
subgraphs in Y.  
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Why C? 
Why isn’t L enough?

• At most, each edge is tested 
twice, and independent errors 
are made in the observation of 
all edges.

• A false negative observation 
from a bait to a hit would break 
one complex into two estimated 
complexes.

• Effectively, C relaxes the 
maximal BH-complete subgraph 
requirement for the initial 
complex estimates to 
accommodate a proportion of 
false negative observations in 
accordance with the sensitivity 
of the AP-MS technology.
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C is designed to allow combinations of the complexes in the estimated A
that increase C in favor of small decreases in L. 
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C is designed to allow combinations of the complexes in the estimated A
that increase C in favor of small decreases in L. 

Since the thousands of individual edges in Y are tested at most twice, an 
estimate of A based solely on L may not be accurate.  C offers a second 
criteria to further refine A.
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In general, P increases for a smaller number of complexes that are both
reflective of approximate maximal BH-complete subgraph structure and
consistent with the observed data.



Complex Estimation Algorithm



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.
4. Set k=1 and K=number of columns of A.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.
4. Set k=1 and K=number of columns of A.
5. For ck, find the set Ak of columns of A, excluding ck, that share 

at least one common entry of “1”.  Calculate log Pk* -log Pk1,k2
for ck paired with all elements in Ak.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.
4. Set k=1 and K=number of columns of A.
5. For ck, find the set Ak of columns of A, excluding ck, that share 

at least one common entry of “1”.  Calculate log Pk* -log Pk1,k2
for ck paired with all elements in Ak.

6. If at least one value of log Pk* -log Pk1,k2 is greater than 0, 
replace ck with the union of ck and cAkmax,the element of Ak
giving the largest value of log Pk* -log Pk1,k2.  Remove cAkmax
and any columns that are strictly less than ck UcAkmax. Set 
K=number of columns of A.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.
4. Set k=1 and K=number of columns of A.
5. For ck, find the set Ak of columns of A, excluding ck, that share 

at least one common entry of “1”.  Calculate log Pk* -log Pk1,k2
for ck paired with all elements in Ak.

6. If at least one value of log Pk* -log Pk1,k2 is greater than 0, 
replace ck with the union of ck and cAkmax,the element of Ak
giving the largest value of log Pk* -log Pk1,k2.  Remove cAkmax
and any columns that are strictly less than ck UcAkmax. Set 
K=number of columns of A.

7. If none of the values of log Pk* -log Pk1,k2 are greater than 0, 
set k=k+1, and return to step 5.



Complex Estimation Algorithm
1. Find the MLE for Y using Z. 
2. Find the initial estimate for A by constructing maximal BH-

complete subgraphs in Y.
3. Order the columns of A according to the number of baits.
4. Set k=1 and K=number of columns of A.
5. For ck, find the set Ak of columns of A, excluding ck, that share 

at least one common entry of “1”.  Calculate log Pk* -log Pk1,k2
for ck paired with all elements in Ak.

6. If at least one value of log Pk* -log Pk1,k2 is greater than 0, 
replace ck with the union of ck and cAkmax,the element of Ak
giving the largest value of log Pk* -log Pk1,k2.  Remove cAkmax
and any columns that are strictly less than ck UcAkmax. Set 
K=number of columns of A.

7. If none of the values of log Pk* -log Pk1,k2 are greater than 0, 
set k=k+1, and return to step 5.

8. Repeat until k=K.



Two types of complex estimates to 
interpret with care



TAP data analysis
• Sensitivity=.75,  Specificity=.001 

• Gene Ontology (GO) cellular component-based similarity 
measure in an extended logistic regression model

– Purpose is to increase the probability that two proximally located proteins 
are complex comembers even if there is not an edge between them

• 720 complexes total
– 123 UnRBB
– 331 SBMH

– 266 multi-bait complexes with at least 2 
proteins and at least 2 edges

• Compared these 266 complexes to the 232 yTAP complexes 
(Gavin et al. 2002) through both a large scale comparison, and 
complex-by-complex for several complexes.



Large Scale Comparison 
to Known Complexes

• Similarity measure: ω=min(i/a,i/b)
– a = # proteins in complex A, b = # proteins in complex B
– i = # proteins in both A and B

• Munich Information Center for Protein Sequences (MIPS) 
reports a list of 267 curated protein complexes , 129 of which 
involved 595 proteins contained in the TAP data.

• Using ω>.70 as a mapping criteria and the common subset of 
595 proteins, we mapped 85 of our complexes to 65 MIPS 
complexes and 40 yTAP complexes to 32 MIPS complexes.



589 ‘raw’ purifications,
N=455,M=909 (1364 total)



Figure 1 from Gavin, et al.

589 
‘raw’ TAP 

purifications

245
purifications

242
purifications

102
purifications w/ 
no detectable 
associations

98
known 

complexes

134
new 

complexes

232
‘yTAP’

complexes

Organization of the purified 
assemblies into complexes.  
On the basis of substantial 
overlaps, we grouped the 
biochemical purifications 
obtained with 589 different entry 
points into biologically meaningful 
complexes. (p.143)



232 ‘TAP complexes’



http://yeast.cellzome.com







Example of unconnected complex, yTAP C121



Example of unconnected complex, yTAP C125



Arp2/3
Arp2/3 complex:

Arp2
Arp3
Arc15
Arc18
Arc19
Arc35
Arc40

‘The Arp2/3 complex is a 
stable multiprotein 
assembly required for the 
nucleation of actin 
filaments in all eukaryotic 
cells and consists of 
seven proteins in human 
and yeast.’

Winter, et al (1997).  Curr Biol.
Higgs and Pollard (2001). Annu 
Rev Biochem.



Arp2/3 complex:
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Arc19
Arc35
Arc40

Arp2/3



Origin Recognition Complex

Origin 
Recognition 
Complex:

Orc1
Orc2
Orc3
Orc4
Orc5
Orc6

Dutta and Bell (1997). Annu 
Rev Cell Dev Biol.
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PP2A

Heterotrimeric
complex consisting of:

Tpd3
- regulatory A subunit

Cdc55 or Rts1
- regulatory B subunits

Pph21 or Pph22
- catalytic subunits

Jiang and Broach (1999). EMBO.



Heterotrimeric
complex consisting of:

Tpd3
- regulatory A subunit

Rts1 or Cdc55
- regulatory B subunits

Pph21 or Pph22
- catalytic subunits

Jiang and Broach (1999). EMBO.

PP2A



RNA Polymerases I, II and III

Archambault and Friesen (1993).  Microbiol Rev.
Myer and Young (1998).  J Biol Chem.
Smid, et al (1995). J Biol Chem.  
Ferri, et al (2000).  Mol Cell Biol.



RNA Polymerases I, II and III



RNA Polymerases I and III



RNA Polymerase II 



mRNA cleavage and polyadenylation
CF I: PF I:

Rna14 Cft1
Rna15 Cft2
Pcf11 Ysh1 (Brr5)
ClpI Pta1
Hrp1 Fip1

Pfs2
Yth1
YKL059C (Mpe1)
YGR156W (Pti1) 
Pap1
Pfs1

-Hrp1 is CFIB – a separate 
component that shuttles between 
the nucleus and cytoplasm
-CF II is Cft1, Cft2, Ysh1, Pta1
-Yeast requires the cooperativity 
of CFI & PFI
-Pfs2 and Rna14 exhibit an in 
vitro interaction

Gross and Moore (2001). PNAS.
Zhao, et al (1997).  J Biol Chem.
Skaar and Greenleaf (2002) Mol Cell.
Vo, et al (2001).  Mol Cell Biol.



mRNA cleavage and polyadenylation
CF I: PF I:

Rna14 Cft1
Rna15 Cft2
Pcf11 Ysh1 (Brr5)
ClpI Pta1
Hrp1 Fip1

Pfs2
Yth1
YKL059C (Mpe1)
YGR156W (Pti1)
Pap1 
Pfs1

-Hrp1 is CFIB – a separate 
component that shuttles between 
the nucleus and cytoplasm
-CF II is Cft1, Cft2, Ysh1, Pta1
-Yeast requires the cooperativity 
of CFI & PFI
-Pfs2 and Rna14 exhibit an in 
vitro interaction

Gross and Moore (2001). PNAS.
Zhao, et al (1997).  J Biol Chem.
Skaar and Greenleaf (2002) Mol Cell.
Vo, et al (2001).  Mol Cell Biol.



mRNA cleavage and polyadenylation
CF I: PF I:

Rna14 Cft1
Rna15 Cft2
Pcf11 Ysh1 (Brr5)
ClpI Pta1
Hrp1 Fip1

Pfs2
Yth1
YKL059C (Mpe1)
YGR156W (Pti1)
Pap1 
Pfs1



TRAPP

TRAPP:

Bet3
Trs20
Bet5
Trs23
Trs33
Trs31
Trs65 (Kre11)
Trs85 (Gsg1)
Trs120
Trs130

Sacher, et al (2000).  EJCB.
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Trs33
Trs31
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Trs120
Trs130
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New complexes to Test?

Only complex in our analysis involving these four, except for some
SBMH complexes.  Currently unreported in the literature.



New complexes to Test?

YCR072C and Kre32 have no annotation in GO or PubMed.



New complexes to Test?

These are both undocumented in the literature – note that 
Enp1, YDL060W (Tsr1), and YNL207W (Rio2) are in both complexes. 



Conclusions

• Distinction between the structures of the 
graphs representing both the estimation goal 
and the available data afforded a simple 
complex membership estimation algorithm 
allowing multiple complex membership by 
individual proteins.

• These complex membership estimates allow 
a more detailed view of complexes than other 
analyses.



What’s Next?
• New Experiments

– Test previously unidentified complexes
– Mutate a gene and see what happens to its 

complex composition?
• Coordination with Other Data

– Y2H data to determine physical connectivity of 
the proteins in a complex

– Cell-cycle gene expression data to determine 
which complexes function in a cell cycle-
dependent manner, and to determine the 
expression profile of multi-complex proteins

– Sequence data to determine binding sites 
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