
Lab 9: An Introduction to Wavelets

June 5, 2003

In this lab, we introduce some basic concepts of wavelet theory and present the
essentials required for possible applications of wavelet decompositions for the analysis
of microarray data. We first explore some wavelet families that have been proved useful
in practice using the wavethresh package and then present basic wavelet methods for
approximation, compression and smoothing.

> library(wavethresh)

> library(Rwave)

> library(ts)

> library(Milan)

Any discussion of wavelets begins with Haar, the simplest. Ingrid Daubechies devel-
oped the family of compactly supported wavelets – thus making discrete wavelet analysis
practicable. What follows gives describes graphically several of the most useful wavelets
from the Daubechies compactly supported family. The names of the Daubechies family
wavelets are named by their filters N . The N = 1 wavelet is the same as Haar.The
following commands display the first 10 members of this family.

> op = par(mfrow = c(5, 2), oma = c(0, 0, 4, 0), mgp = c(1.2,

+ 0.8, 0), mar = 0.1 + c(4, 4, 0.5, 1))

> for (fn in 1:10) {

+ draw.default(filter.number = fn, col = "blue", main = NULL,

+ xlab = "")

+ abline(h = 0, v = 0, lty = 3, lwd = 0.5, col = "gray")

+ }

> mtext(paste("draw.default(*, family = ’", formals(draw.default)$family[[2]],

+ "’)"), side = 3, line = 1, outer = TRUE, cex = par("cex.main"),

+ font = par("font.main"))

> par(op)
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draw.default(*, family = ' DaubExPhase ')

In practical applications, the choice of wavelet family and index N is not terribly
important. Notice how the support of the functions increases with their index.

In order to appreciate the application of wavelets to various function estimation
problems in statistics, it is first useful to examine the basic principles of wavelet analysis
by means of the discrete wavelet transform and the concept of multiresolution analysis.

Let us create a signal with some singularities and display it.

> test.data1 = example.1()$y

> ts.plot(test.data1, ylab = "y")

> title("A function with a jump")
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A function with a jump

The following commands produce a Wavelet decomposition-plot of the wavelet coef-
ficients at different resolution levels (scales). The plot results from applying the discrete
wavelet transform with a Daubechies N = 2 wavelet to a set of 512 equally spaced val-
ues from the function displayed previously. The number of coefficients at each level is
exactly half that of the next higher level, so there are 256 coefficients at level 8, 128 at
level 7, and so on.

> wds1 <- wd(test.data1)

> plot(wds1)
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Such a plot provides a good description of where significant changes are taking place
in the function. The location of the abrupt jump can be spotted by looking for vertical
clusterings of relatively large coefficients.

The next plot gives a schematic diagram of the decomposition process underlying
a multiresolution analysis. The original signal is broken down into successive approxi-
mations (plots on the left) and details (plots on the right). Adding the details to the
approximations at a given row produces a better approximation at the next higher level.
Such a plot is called a wavelet decomposition tree.

> par(mfrow = c(4, 2))

> plot.ts(accessC(wds1, level = 8))

> plot.ts(accessD(wds1, level = 8))

> plot.ts(accessC(wds1, level = 7))

> plot.ts(accessD(wds1, level = 7))

> plot.ts(accessC(wds1, level = 6))

> plot.ts(accessD(wds1, level = 6))

> plot.ts(accessC(wds1, level = 5))

> plot.ts(accessD(wds1, level = 5))
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We illustrate the above by treating another example. The analyzed signal is a chirp.

> par(mfrow = c(1, 1))

> test.data2 <- achirp(512)$y

> ts.plot(test.data2, ylab = "y")

> title("A linear chirp")
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A linear chirp

Its discrete wavelet transform

> wds2 <- wd(test.data2)

> plot(wds2)
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and the corresponding wavelet decomposition tree

> par(mfrow = c(4, 2))

> plot.ts(accessC(wds2, level = 8))

> plot.ts(accessD(wds2, level = 8))

> plot.ts(accessC(wds2, level = 7))

> plot.ts(accessD(wds2, level = 7))

> plot.ts(accessC(wds2, level = 6))

> plot.ts(accessD(wds2, level = 6))

> plot.ts(accessC(wds2, level = 5))

> plot.ts(accessD(wds2, level = 5))
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To get a clearer picture of the frequency contents of the chirp signal we produce
a time-scale view of it using instead the continuous wavelet transform available in the
Rwave package.

The corresponding plot displays the original signal, the image plot of the modulus
of the (complex valued) continuous wavelets coeffcients and their phase (bottom figure).
How to make sense of all these coefficients? The x-axis represents positions along the
signal (time), the y-axis represents scale (frequency), and the color at each x-y point
represents the magnitude of the wavelet coefficient.

> par(mfrow = c(3, 1))

> plot.ts(test.data2)

> title("A chirp")

> cwtchirp <- cwt(test.data2, 5, 12)

> image(Arg(cwtchirp))
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The next chunk illustrates the good compression properties of the wavelet transform.
One needs to use the test.data1 example again. Any wavelet coefficients whose mag-
nitude, in absolute value, is smaller than 0.06, is thresholded to zero. There are in total
491 coefficients from the original 512 that are set to 0.

> levels <- 3:(wds1$nlevels - 1)

> nthresh <- length(levels)

> d <- NULL

> dz <- 0

> for (i in 1:nthresh) {

+ d <- accessD(wds1, level = levels[i])

+ d[abs(d) <= 0.06] = 0

+ dz = dz + sum(d == 0)

+ cat("Level: ", levels[i], " there are ", sum(d == 0), " zeroes\n")

+ wds2 <- putD(wds1, level = levels[i], v = d)

+ }

Level: 3 there are 2 zeroes

Level: 4 there are 14 zeroes
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Level: 5 there are 31 zeroes

Level: 6 there are 63 zeroes

Level: 7 there are 127 zeroes

Level: 8 there are 254 zeroes

> cat("there are in total", dz, " zeroes\n")

there are in total 491 zeroes

The figure displays the resulting approximation obtained by inverting the wavelet
transform of the thresholded signal (using the function wr) and its difference with the
original signal.

> par(mfrow = c(2, 1))

> ts.plot(wr(wds2))

> ts.plot(test.data1 - wr(wds2))
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The next series of plots illustrates the use of denoising by means of selective wavelet
reconstructions. Such procedures are nonlinear and are designed to distinguish coeffi-
cients that belong to the noise from true coefficients which contribute significant signal.

We prepare the graphic device, simulate some noisy data and display wavelet hard
thresholding estimates with varying values of the threshold.

> par(mfcol = c(3, 2), mar = c(2, 2, 2, 1), mgp = c(5, 0.4, 0))

> x <- (1:128)/128

> f1 <- 2 * sin(2 * pi * x)

> f2 <- c(rep(0, 32), rep(4, 64), rep(0, 32))

> y1 <- f1 + rnorm(128)

> y1wd <- wd(y1, filter.number = 5)

> plot(x, y1, cex = 0.55)

> lines(x, wr(threshold(y1wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 1.75)))

> mtext("Threshold = 1.75", side = 3, line = 0.1, cex = 0.6)

> plot(x, y1, cex = 0.55)

> lines(x, wr(threshold(y1wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 2.75)))

> mtext("Threshold = 2.75", side = 3, line = 0.1, cex = 0.6)

> plot(x, y1, cex = 0.55)

> lines(x, wr(threshold(y1wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 3.75)))

> mtext("Threshold = 3.75", side = 3, line = 0.1, cex = 0.6)

> y2 <- f2 + rnorm(128)

> y2wd <- wd(y2, filter.number = 5)

> plot(x, y2, cex = 0.55)

> lines(x, wr(threshold(y2wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 1.75)))

> mtext("Threshold = 1.75", side = 3, line = 0.1, cex = 0.6)

> plot(x, y2, cex = 0.55)

> lines(x, wr(threshold(y2wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 2.75)))

> mtext("Threshold = 2.75", side = 3, line = 0.1, cex = 0.6)

> plot(x, y2, cex = 0.55)

> lines(x, wr(threshold(y2wd, policy = "manual", type = "hard",

+ levels = 0:6, value = 3.75)))

> mtext("Threshold = 3.75", side = 3, line = 0.1, cex = 0.6)

11



●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

Threshold = 1.75

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

Threshold = 2.75

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

Threshold = 3.75

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

Threshold = 1.75

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

Threshold = 2.75

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

Threshold = 3.75

Let’s see another example using other types of thresholding procedures (SURE and
hybrid SURE). The thresholds are determined by an optimization procedure and we
therefore may wait some time to get the result.

> par(mfrow = c(2, 2), mar = c(1.5, 1.5, 1.5, 0.5), mgp = c(5,

+ 0.4, 0))

> x <- (1:2048)/2048

> f <- fblocks(x)

> ssig <- sqrt(var(f))

> f <- ((f - mean(f)) * 5)/ssig

> fnoise <- f + rnorm(2048)

> fwd <- wd(fnoise, filter.number = 5)

> plot(x, f, type = "l")

> mtext(side = 3, line = 0.1, "True function")

> plot(x, fnoise, type = "l")

> mtext(side = 3, line = 0.1, "Noisy observations")

> fwdsure <- threshsure(fwd)

> plot(x, wr(fwdsure), type = "l")
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> mtext(side = 3, line = 0.1, "SURE estimator")

> fwdhyb <- threshhyb(fwd, lowlev = 2, seed = 0)

> plot(x, wr(fwdhyb), type = "l")

> mtext(side = 3, line = 0.1, "SURE hybrid estimator")
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SURE hybrid estimator

To end this lab we want to discuss of a practical issue that arises in using the discrete
wavelet transform, namely its lack of translation invariance. To illustrate this point
consider a simulated data set consisting of 64 N(2, 1) random variables followed by 64
N(−2, 1) observations. The other two data set in the plots that follow are just translated
versions of the first (corresponding to a shift of 1/3 and 1/4 respectively). For all three
data sets, universal thresholding smoothing has been applied. The first estimate is quite
good, but the third estimate fails considerable, due do the lack of translation invariance.

> k1 <- 32

> k2 <- 42

> par(mfrow = c(3, 1), mar = c(1.5, 1.5, 1.5, 0), mgp = c(5, 0.4,

+ 0))

> x <- (1:128)/128
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> unshft <- c(rep(1, 64), rep(-1, 64))

> noise <- rnorm(128)

> y <- 2 * unshft + noise

> plot(x, y, type = "l")

> yest <- wr(threshold(wd(y, filter.number = 1), levels = 0:6))

> lines(x, yest)

> if (k1 == 0) y1 <- y else y1 <- c(y[(1 + k1):128], y[1:k1])

> if (k1 == 0) shft1 <- unshft else shft2 <- c(unshft[(1 + k1):128],

+ unshft[1:k1])

> plot(x, y1, type = "l")

> y1est <- wr(threshold(wd(y1, filter.number = 1), levels = 0:6))

> lines(x, y1est)

> if (k2 == 0) y2 <- y else y2 <- c(y[(1 + k2):128], y[1:k2])

> if (k2 == 0) shft2 <- unshft else shft2 <- c(unshft[(1 + k2):128],

+ unshft[1:k2])

> plot(x, y2, type = "l")

> y2est <- wr(threshold(wd(y2, filter.number = 1), levels = 0:6))

> lines(x, y2est)
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There is of course a solution to this problem. One could compute the wavelet estima-
tor for all possible shifts, then inverse shift them and take as a final estimate the average
of the estimates resulting from all shift values. This is done by the function spincyclen

as illustrated below. The red smooth curve is the one obtained without spin cycling.

> par(mfrow = c(1, 1))

> par(mar = c(1.5, 1.5, 1.5, 0.5), mgp = c(5, 0.4, 0))

> x <- (1:128)/128

> y <- 2 * c(rep(1, 64), rep(-1, 64)) + rnorm(128)

> plot(x, y, type = "l")

> yest <- spincyclen(y, filter.number = 1)

> lines(x, yest)

> yest1 <- spincyclen(y, filter.number = 3)

> lines(x, yest1, col = "red")
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One can easily repeat the illustration procedures given above with signals and data
of its own choice.
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