
Lab 12: Dimension reduction in R

June 6, 2003

In this lab, we present some dimension reduction algorithms that are available in R
and that are useful for classification of microarray data. The first example in this section
will rely on the data reported in Hedenfalk et al. (2001) where one of the goals is to find
genes that are differentially expressed between BRCA1-mutation-positive tumors and
BRCA2-mutation-positive tumors by obtaining several microarrays from each cell type.

We first load the neccessary libraries for this lab.

> library(mda)

> library(dr)

> library(Milan)

Expression measures are stored in an hedenfalk object available through the brca
package.

> data(brca)

> names(brca) = c("plate", "cid", "BC11", "BC15", "BC13", "BC17",

+ "BC12", "BC14", "BC210a", "BC29", "BC28", "BC210b", "SP16",

+ "SP17", "SP15", "SP18", "SP19", "SP21", "SP20", "BC16",

+ "BC213", "BC214", "BC211", "BC212")

> brca <- (brca[, c(-1, -2)])

> brca.class <- c(rep(1, 6), rep(2, 4), rep(0, 7), 1, rep(2, 4))

We formulate the effects of gene expression on class type using the multinomial
logistic regression model:

log
P (Yi = r)

P (Yi = 0)
= Xi·βr0, r = 1, . . . , G− 1,

where βr0 is a p-dimensional vector of unknown regression coefficients. Since p >> n it
is not possible to estimate the parameters of the above model using standard statistical
methods. A principal component study becomes then a suitable first step to reduce the
dimension of βr0.

We will first apply a singular value decomposition based logistic regression method
to classify the cells. It is much like principal component regression analysis (PCR). In
order to setup the model we define first the design matrix for discrimination.
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> brcam = matrix(brca)

> brda = as.vector(brca$BC11[[1]])

> for (i in 2:22) brda = cbind(brda, brcam[[i]][[1]])

We now apply the SVD logistic procedure, made by Ghosh (2001) and available in
the Milan.

> da1 <- svdrfda(factor(brca.class) ~ t(brda), K = 3)

> plot.fda(da1)

> confusion(predict(da1), factor(brca.class))

true

object 0 1 2

0 7 1 1

1 0 6 0

2 0 0 7

attr(,"error")

[1] 0.0909091
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SVD produces orthogonal class descriptors that reduce the high dimensional data
(supergenes). This is achieved without regards to the response variation and may be
inefficient. This way of reducing the regressor dimensionality is totally independent of
the output variable. Another method is PLS, where the PLS components are chosen
so that the sample covariance between the response and a linear combination of the p
predictors (genes) is maximum.

> da2 <- svdpls1fda(factor(brca.class) ~ t(brda), K = 3)

2

> plot.fda(da2)

> confusion(predict(da1), factor(brca.class))

true

object 0 1 2

0 7 1 1

1 0 6 0

2 0 0 7

attr(,"error")

[1] 0.0909091
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However, PLS is really designed to handle continuous responses and especially for
models that do not really suffer from conditional heteroscedasticity as it is the case for
binary or multinomial data, as it is the case here. An extension of the standard PLS
algorithm to Generalized linear Modelsis also available from Marx. Here is an example
on how to use such a procedure.

> y <- c(rep(1, 6), rep(0, 11), 1, rep(0, 4))

> fit <- gpls(y, t(brda), components = 4, family = "binomial",

+ link = "logit")

[1] 1 1 0

[1] 2.000 2.375 1.000

[1] 3.0000000 0.3648937 0.1548246

[1] 4.0000000 0.2831986 0.5233251

[1] 5.0000000 0.2104281 21.4216001

[1] 6.0000000 0.1629339 1.0425011

[1] 7.0000000 0.1504187 3.7663149

[1] 8.0000000 0.3316823 0.8699909
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[1] 9.0000000 0.2246022 1.7113645

[1] 10.0000000 0.1381122 3.8310665

[1] 11.0000000 0.4059827 0.6957843

[1] 12.0000000 0.3065472 0.3682269

[1] 13.0000000 0.1582838 0.5851757

[1] 14.0000000 0.2909088 0.6314775

[1] 15.0000000 0.2259065 0.6658327

[1] 16.0000000 0.4839746 1.9946585

[1] 17.0000000 0.1014345 26.6008493

[1] 18.0000000 0.3087664 22.1390652

[1] 19.0000000 0.9120893 3.9259203

[1] 20.000000 0.344829 3.189400

[1] 21.0000000 0.2626732 1.4324321

[1] 22.0000000 0.1394335 0.9186048

[1] 23.000000 1.452462 2.811113

[1] 24.00000 0.62279 16.24731

[1] 25.0000000 0.2867805 5.2564918

> z = fit$mu > 0.5

> z = as.integer(z)

> confusion(z, y)

true

object 0 1

0 15 0

1 0 7

attr(,"error")

[1] 0

The purpose of the following commands is to apply other type of dimension reduction
methods to the BRCA data. They are based on sliced inverse regression methods such
as those implemented in dr . The following commands estimate the central dimension
reduction subspace and perform a two-class discrimination. Note that since we are
dealing with binary responses the number of slices must be two.

> fitdr = dr(y ~ t(brda), method = "Sir", nslices = 2)

> plot(fitdr, mark.by.y = T)
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When X are normally distributed, SIR is equivalent to Linear Discriminant Analysis
in the sense that they both estimate the same discriminant linear combinations of the
predictors and SAVE is equivalent to Quadratic Discriminant Analysis.

> fitdr = dr(y ~ t(brda), method = "Save", nslices = 2)

> dr.permutation.test(fitdr, npermute = 100)

Permutation tests

Number of permutations:

[1] 100

Test results:

Stat p-value

0D vs >= 1D 1237.2 0.9802

1D vs >= 2D 1172.5 0.7921

2D vs >= 3D 1107.7 0.7228

3D vs >= 4D 1042.9 0.8614

4D vs >= 5D 978.1 0.9406
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> plot(fitdr, mark.by.y = T)
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We have applied sliced inverse regression methods to binary data but note that SIR
and SAVE can also be applied to problems with multinomial or multi-valued responses.
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