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Generalities

Interest in representing an "observed” signal as an
appropriate superposition of "elementary” functions in
an adapted way.

To obtain such representations that can be useful in
practice, one needs fast computational algorithms.

Once such representations are derived, one would like
to simplify them in a efficient way by choosing
appropriately only few elementary components. This
may be seen as an approximation or compression task.
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The Haar basis

The Haar basis is the simplest example of a wavelet basis. It
allows us to introduce in a clear and simple way the
wavelet idea, without going to far into mathematical
details.
Suppose we are given a discretized version of an integrable
function f on [0, 1] on an equidistant grid of 8 values.
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The Haar basis

The Haar basis is the simplest example of a wavelet basis. It
allows us to introduce in a clear and simple way the
wavelet idea, without going to far into mathematical
details.
Suppose we are given a discretized version of an integrable
function f on [0, 1] on an equidistant grid of 8 values. Let
the discrete signal be:

[2 4 8 12 14 0 2 1]

A digital signal on [0, 1]
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We could represent the above digital signal in a different

way in order to exploit a possible correlation between

adjacent points. To this end, for every pair of neighbors we

compute their averages to obtain: [3 10 7 1.5]

Averages of neighbor values

To avoid any loss of information we also need to record some

other values that represent the loss of information when going

from the finer grid to the coarser.

An Introduction to Wavelets and some Applications – p.5/54



We choose
[−1 − 2 7 0.5]

Differences of Input and its approximation

Indeed, 3+(-1)=2, 3-(-1)=4, 10+(-2)=8, . . .

An Introduction to Wavelets and some Applications – p.6/54



We choose
[−1 − 2 7 0.5]

Differences of Input and its approximation

Indeed, 3+(-1)=2, 3-(-1)=4, 10+(-2)=8, . . .

input signal = signal with lower resolution (4 values) and a

quadruple of differences (the details).
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The Haar transform

We can repeat the procedure over the averages again and
again to obtain:

Resolution Averages Details

8 [ 2 4 8 12 14 0 2 1]

4 [ 3 10 7 1.5] [ -1 -2 7 0.5]

2 [ 6.5 4.25 ] [ -3.5 2.75 ]

1 [ 5.375 ] [ 1.125 ]

thus representing the input as:

[5.3751.125 − 3.52.75 − 1 − 270.5]
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Difference

Difference

Difference

Input = digital signal

Average

Average

Average
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The digital input may be considered as a piecewise constant

function on [0, 1] on the intervals I3,k = [2−3k, 2−3(k + 1)[,

k = 0, . . . , 23 − 1. If φ(x) = I[0,1[(x) and φj,k(x) = φ(2jx − k),

the function may be written as

f (x) = 2φ3,0(x) + 4φ3,1(x) + 8φ3,2(x) + 12φ3,3(x) + · · ·
14φ3,4(x) + 0φ3,5(x) + 2φ3,6(x) + 1φ3,7(x).

We then may re-write:

f (x) = 3φ2,0(x) + 10φ2,1(x) + 7φ2,2(x) + 1.5φ2,3(x) + · · ·
(−1)ψ2,0(x) + (−2)ψ2,1(x) + 7ψ2,2(x) + 0.5ψ2,3(x),

where ψ(x) = I[0,1/2[(x) − I[1/2,1[(x).
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V0 subspace of L2([0, 1[) spanned by the constant

functions on [0, 1[.
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V0 subspace of L2([0, 1[) spanned by the constant

functions on [0, 1[.

V1 subspace spanned by the piecewise constant

functions on [0, 1/2[ and [1/2, 1[
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V0 subspace of L2([0, 1[) spanned by the constant

functions on [0, 1[.

V1 subspace spanned by the piecewise constant

functions on [0, 1/2[ and [1/2, 1[

Vj subspace spanned by the piecewise constant functions

on the intervals Ij,k, k = 0, 2j − 1.
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V0 subspace of L2([0, 1[) spanned by the constant

functions on [0, 1[.

V1 subspace spanned by the piecewise constant

functions on [0, 1/2[ and [1/2, 1[

Vj subspace spanned by the piecewise constant functions

on the intervals Ij,k, k = 0, 2j − 1.

They are nested. Moreover, for each of them, the families

{φj,k, k = 0, . . . , 2j − 1} form a basis. For the usual inner prod-

uct 〈 f , g〉 =
∫ 1

0 f (x)ḡ(x)dx, these families are orthogonal and

{ψj,k, k = 0, . . . , 2j − 1} is a basis of the vector space Wj, or-

thogonal complement of Vj in Vj+1. An Introduction to Wavelets and some Applications – p.10/54



Multiresolution analysis on the R

A multiresolution analysis of L2(R) is a nested sequence of

closed subspaces Vj, j ∈ Z, of L2(R),

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

such that

∩jVj = {0}, ∪jVj = L2(R), f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1,

There exists a function φ ∈ V0 such that

V0 =

{

f ∈ L2(R) : f (x) = ∑
k∈Z

αkφ(x − k)

}

,

{φk, k ∈ Z} is a "stable” basis of V0, i.e. 0 < m ≤ ‖φk‖ ≤ M <

∞ and A‖ f ‖2 ≤ ∑k α2
k ≤ B‖ f ‖2.
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The function φ is called the scaling function of the MRA. Let

φj,k(x) = 2j/2φ(2jx − k).

For an orthogonal MRA, an orthonormal basis of Vj is

{φj,k : k ∈ Z} and

Pj f = ∑
k∈Z

< f , φj,k > φj,k ,

is the approximation of f at resolution 2−j.
If Wj is the orthogonal complement of Vj in Vj+1, we obtain

another sequence {Wj : j ∈ Z} of closed orthogonal

subspaces of L2(R), such that each Wj is a refinement of W0,

and their direct sum is L2(R).
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One can show that there exists a function ψ such that W0 is
spanned by its integer translates. Then ψ is called the
wavelet associated to ϕ. For each integer j,the family

{ψj,k, k ∈ Z}

is an orthonormal basis of Wj.

If g ∈ L2(R) we have:

g = ∑
k∈Z

cj0,k ϕj0,k + ∑
j≥j0

∑
k∈Z

dj,kψj,k

where j0 is a level of coarse approximation.
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The first part in the right hand side is the orthogonal
projection Pj0 g of g on Vj0 , and the second part represents

the details. The coefficients are defined by

cj,k = 〈g, φj,k〉

and
dj,k = 〈g, ψj,k〉.

The c’s are called the scaling coefficients while the d’s are the

wavelet coefficients.
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Filter banks

Since V0 ⊂ V1, any function of V0 has an expansion in terms
of the basis {φ1,k, k ∈ Z} of V1. For φ(x) = φ0(x) = φ0,0(x)

we have

φ(x) = ∑
k∈Z

akφ1,k(x) =
√

2 ∑
k∈Z

akφ(2x − k)

with
ak = 〈φ, φ1,k〉 ∈ `2(Z).
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When the scaling functions are compactly supported, there
is only a finite number of non zero coefficients among the
ak’s and

φ(x) =
√

2
D−1

∑
k=0

akφ(2x − k)

The coefficients a = {ak} define the filter corresponding to
φ.

The scaling function is compactly supported if and only if a

has a finite number of non zero coefficients.
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By analogy, and since W0 ⊂ V1 we also have

ψ(x) =
√

2
D−1

∑
k=0

bkφ(2x − k)

with
bk = 〈ψ, φ1,k〉 ∈ `2(Z).

The filters {ak} and {bk} are conjugate mirror filter banks.
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A perfect reconstruction filter bank decomposes a signal by
filtering and subsampling. It reconstructs it by inserting
zeroes, filtering and summation.

The filter bank is said to be a perfect reconstruction filter

bank when a2 = a0. If, additionally, h = h2 and g = g2, the

filters are called conjugate mirror filters.
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Numerical evaluation

No analytic formulas for evaluating numerically φ and ψ.

For compactly supported wavelets we have two
algorithms :

An iterative algorithm (Daubechies and Lagarias
cascade algorithm).

An iterative method for solving the dilatation
equations
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The Cascade Algorithm

Build φ using the filter a0, . . . , aD−1 with D even and ≥ 4.
Start with φ0(x) = I[0,1[(x). Compute then recursively the

successive approximations of φ(x) using a0, . . . , aD−1, i.e.

φm(x) =
D−1

∑
k=0

akφm−1(2x − k).

One can show that this algorithm converges towards φ,

when the iterations m converge to ∞. In practice, 8 iterations

suffice for a good discretization of φ.
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Example: φ Daubechies D = 4
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Building φ by the cascade algorithm
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Periodic wavelets

Until now the functions were defined on R.
While this seems reasonable for some applications, in
practice most functions are observed over bounded
domains .

There exist many ways to define a MRA adapted to a
bounded domain.

One of these, the most simple and direct way, is by using
periodic wavelets.

Let the scaling function φ ∈ L2(R) and the associated

wavelet ψ ∈ L2(R) be given.
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For all j, l ∈ Z, we define the periodic scaling function of
period 1, by

φ̃j,l(x) =
+∞

∑
n=−∞

φj,l(x + n)

and the associated periodic wavelet by

ψ̃j,l(x) =
+∞

∑
n=−∞

ψj,l(x + n).
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Note that, for j ≤ 0 and l ∈ Z,

φ̃j,l(x) = 2j/2 ∑
n

φ(2j(x + n − 2−jl)) = φ̃j,0(x)

Therefore

j ≤ 0 φ̃j,l(x) = 2−j/2.

Similarly we can show that

∀j ≤ −1, ψ̃j,l = 0.
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For φ and ψ generated with a filter of length D:

φ̃j,l(x) = 2−j/2 for all j ≤ 0 and all l ∈ Z.
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For φ and ψ generated with a filter of length D:

φ̃j,l(x) = 2−j/2 for all j ≤ 0 and all l ∈ Z.

ψ̃j,l(x) = 0 for all j ≤ −1 and all l ∈ Z.
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For φ and ψ generated with a filter of length D:

φ̃j,l(x) = 2−j/2 for all j ≤ 0 and all l ∈ Z.

ψ̃j,l(x) = 0 for all j ≤ −1 and all l ∈ Z.

for all j > J0 ≥ log2(D − 1) and x ∈ [0, 1],

φ̃j,l(x) = φj,l(x)IIj,l
(x) + φj,l(x + 1)IIc

j,l
(x)

with an identical relation for ψ̃.
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For φ and ψ generated with a filter of length D:

φ̃j,l(x) = 2−j/2 for all j ≤ 0 and all l ∈ Z.

ψ̃j,l(x) = 0 for all j ≤ −1 and all l ∈ Z.

for all j > J0 ≥ log2(D − 1) and x ∈ [0, 1],

φ̃j,l(x) = φj,l(x)IIj,l
(x) + φj,l(x + 1)IIc

j,l
(x)

with an identical relation for ψ̃.
∫ 1

0
f (x)φ̃j,l(x)dx =

∫ ∞

−∞

f̃ (x)φj,l(x)dx

(similarly for ψ) where f̃ (x) = f (x − [x]), x ∈ R.
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The periodic scaling functions and corresponding periodic

wavelets define an orthonormal MRA of L2([0, 1]).

The approximation and details spaces are given by:

Ṽj = span
{

φ̃j,l , l = 0, . . . , 2j − 1
}

and

W̃j = span
{

ψ̃j,l , l = 0, . . . , 2j − 1
}

We obtain, for J0 ≥ 0 the following decomposition of

L2([0, 1]):

L2([0, 1]) = ṼJ0
⊕
(

⊕j≥J0
W̃j

)

.

An Introduction to Wavelets and some Applications – p.26/54



Fast discrete wavelet transform

Orthogonality of the scaling functions and the associated
wavelets lead to a fast computational algorithm for
decomposing or synthetizing a function of Vj.

Let f ∈ L2(R). We have

(PVj
f )(x) = (PVj−1

f )(x) + (PWj−1
f )(x),

formulated as

(PVj
f )(x) = ∑

`∈Z

cj−1,`φj−1,`(x) + ∑
`∈Z

dj−1,`ψj−1,`(x).

Aim: find a relation between the sequence of coefficients cj,`

and the sequences cj−1,` and dj−1,`.
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The key is

φj−1,`(x) =
D−1

∑
k=0

akφj,2`+k(x) and ψj−1,`(x) =
D−1

∑
k=0

bkφj,2`+k(x)

We have

cj−1,` =

∫

f (x)φj−1,`(x)dx =

∫

f (x)
D−1

∑
k=0

akφj,2`+k(x)dx

=
D−1

∑
k=0

ak

∫

f (x)φj,2`+k(x)dx =
D−1

∑
k=0

akcj,2`+k

and dj−1,` = ∑
D−1
k=0 bkcj,2`+k.
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Conversely, noting that

φj,`(x) = ∑
k

a`−2kφj−1,k(x) + ∑
k

b`−2kψj−1,k(x)

we obtain

cj,` = ∑
k

a`−2kcj−1,k + ∑
k

b`−2kdj−1,k(x)

These two above equations lead to the discrete fast wavelet

transform.
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An example

As an example, let

c =
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The decomposition steps are:































c3,0

c3,1

c3,2

c3,3

c3,4

c3,5

c3,6

c3,7































−→































c2,0

c2,1

c2,2

c2,3

d2,0

d2,1

d2,3

d2,4































−→































c1,0

c1,1

d1,0

d1,1

d2,0

d2,1

d2,3

d2,4































−→































c0,0

d0,0

d1,0

d1,1

d2,0

d2,1

d2,2

d2,4































.

The final vector is the results of the DWT of the initial
values.
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Matrix Representation of the DWT

Let

cj = (cj,0, . . . , cj,2j−1)
T

and
dj = (dj,0, . . . , dj,2j−1)

T

The DWT equations define linear maps from R
2j

to R
2j−1

and may be written as:

cj−1 = Ajcj

dj−1 = Bjcj

where Aj and Bj are 2j−1 × 2j matrices defined via the filters.
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Approximation properties

A linear approximation of square integrable function f on
an orthonormal basis B = {en}n∈Z projects f on the space
spanned by M vectors chosen a priori in B:

fM =
M−1

∑
n=0

〈 f , en〉en.

The quality of the approximation

‖ f − fM‖2 = ∑
n≥M

|〈 f , en〉|2

depends on the properties of f with respect to B.
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Fourier analysis provides efficient approximations for
global smooth functions by projecting them on the space
spanned by sinusoidal waves of frequencies the first M low
frequencies.

In a wavelet basis the signal is projected on VM.

Here too, the quality of approximation depends on the

global regularity of the function l f .
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Nonlinear approximation

A linear approximation of f may be enhanced if the M
vectors are chosen a posteriori, in a way that depends on f .

For M fixed, the approximation error is minimized by
taking the M vectors for which the coefficients |〈 f , en〉| are
the largest.

If B is a wavelet basis,the amplitude of the coefficients is
related to the local regularity of f and a nonlinear
approximation amounts in using an adaptative sampling
whose resolution increases locally where the function is
irregular.
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First application: Compression

Consider a function f expanded in a basis as

f (x) =
m

∑
k=1

ckek(x).

The input data are the coefficients c1, . . . , cm. The aim of
compression is to define an approximation of f using much
less coefficients (possible in a different basis) with a
minimum loss of information.
Given an upper bound for the error, say ε > 0, we seek

f̃ (x) =
m̃

∑
k=1

c̃k ẽk(x)

with m̃ < m and ‖ f − f̃ ‖ ≤ ε. An Introduction to Wavelets and some Applications – p.36/54



For simplicity consider that the basis is fixed one for all and
that it is orthonormal.
Let σ be a permutation of {1, 2, . . . , m} and let f̃ the
approximation using the first m̃ coefficients of the
permutation σ :

f̃ (x) =
m̃

∑
k=1

cσ(k)eσ(k)(x).

The L2 error of this approximation is ‖ f − f̃ ‖2
2 =

∑
m
k=m̃+1 |cσ(k)|2. To minimize it σ must rank the coefficients

in a decreasing order of their absolute magnitude.
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Example

JumpSine Signal
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Compression

Compression example
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Second application: denoising

Data :
Yj = f (tj) + εj, j = 1, . . . , n

Usually : tj equidistant, n = 2m, and εj i.i.d mean 0 and

variance σ2. In practice,

nonequispaced design;
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Second application: denoising
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number of data points not a power of 2.
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Second application: denoising

Data :
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Second application: denoising

Data :
Yj = f (tj) + εj, j = 1, . . . , n

Usually : tj equidistant, n = 2m, and εj i.i.d mean 0 and

variance σ2. In practice,

nonequispaced design;

number of data points not a power of 2.

design may be random;

the errors may not be of constant variance;
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Linear methods

Extension of penalized least-squares methods
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Linear methods

Extension of penalized least-squares methods

choice of the smoothing parameter by GCV.
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Linear methods

Extension of penalized least-squares methods

choice of the smoothing parameter by GCV.

An example.
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Simple idea:

Approximate 2m/2〈 f , φm,k〉 ∼ f (k/2m) and replace the raw

data {Yi} by its interpolation in Vm:

f̂m(t) = 2−m/2 ∑
k∈Z

Ykφm,k(t)

Minimize
‖ f̂m − f ‖2

L2([0,1])
+ λJ

p
spp(PVJ0

f )

where J0 is given et Jspp is norm on Bs
pp([0, 1]).
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The norm of g ∈ Bs
pq([0, 1]) is equivalent to

Jspq(α, β) = ‖αj0·‖p +

(

∞

∑
j=0

(2j(s+(1/2)−(1/p))‖β j·‖p)
q

)1/q

.
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The solution

fλ =
2j0−1

∑
k=0

cj0,k ϕJ0,k +
m

∑
j=J0

2j−1

∑
k=0

β̂ j,kψj,k,

• cj0,k, k = 0, . . . , 2j0 − 1 are the scaling coefficients of the

DWT of f̂m.

• β̂ j,k =
dj,k

1+λ22sj , j ≥ j0, k = 0, . . . , 2j − 1, with dj,k the

wavelet coefficients of W f̂m.
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Cross validation

One may choose J0 and λ given the data and show that the
resulting estimation has good properties (at least
asymptotically). One popular method is cross validation.

 voltage drop vs time.
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A real data example with D8 compared to spline smoothing
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Nonlinear methods

Decompose the signal into its wavelet coefficients
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Nonlinear methods

Decompose the signal into its wavelet coefficients

Extract the most significant coefficients by shrinkage
or thresholding.
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Nonlinear methods

Decompose the signal into its wavelet coefficients

Extract the most significant coefficients by shrinkage
or thresholding.

Denoise by applying the inverse wavelet transform on
the resulting coefficients.
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Almost all existing nonlinear methods are of the form:

2−1
n

∑
i=1

(zi − θi)
2 + λ ∑

i≥i0

p(|θi|),

where zi is the ith row of z = WYn and pλ is an
appropriate penalty function.
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Hard thresholding

1. Transform the data via DWT : Θ̃ = W · Y.

2. To separate the signal form its noise, threshold the

coefficients: set θ̂j,k = θ̃j,k if |θ̃j,k| is large, 0 otherwise.

3. Estimate the signal by f̂ = W−1 · Θ̂.
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Soft thresholding

1. Transform the data via DWT : Θ̃ = W · Y.

2. To separate the signal form its noise, threshold the
coefficients: set

θ̂j,k =

{

θ̃j,k − λ, si |θ̃j,k| > λ,

0, si |θ̃j,k| ≤ λ,

3. Estimate the signal by f̂ = W−1 · Θ̂.

Many ways for choosing the thresholds.The initial resolu-

tion j0 is usually set to (log2 N)/2.
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Examples

(a) Lp penalty with p = 1 (soft (p=1)), p = 0.6 (short dash)

and p = 0.2 (solid); (b) hard; (c) SCAD (robust); (d)
transformed soft.
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Corresponding estimates
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Universal thresholding (VisuShrink)

When the noise is Gaussina, most of the coefficients

(normalized as:
√

Ndj,k/σ) are essentially white noise. This

suggests to take λ =
√

2 log N, producing the principle
VisuShrink implemented in the package wavethresh of R.

Noisy Signal
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Properties

When compared, it seems that hard thresholding produces
estimates with larger variance while soft thresholding is
more biased.
Some authors propose a robust version:

θ̂
λ1,λ2
j,k =











0 si |θ̃j,k| ≤ λ1

sgn(θ̃j,k)
λ2(|θ̃j,k|−λ1)

λ2−λ1
si λ1 < |θ̃j,k| ≤ λ2

θ̃j,k si |θ̃j,k| > λ2,

which groups the advantages of both thresholding methods
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Software

WaveLab for Matlab.

Wavelet Toolbox for Matlab.

Wavelab for Scilab.

S+Wavelets for S-plus.

Wavetresh 2.2 for S-plus and R.

Many new denoising algorithms are implemented in
MATLAB and are available at

www-lmc.imag.fr/SMS/software

An Introduction to Wavelets and some Applications – p.54/54


	Outline
	Generalities
	The Haar basis
	
	
	The Haar transform
	
	
	
	Multiresolution analysis on the $RR $
	
	
	
	Filter banks
	
	
	
	Numerical evaluation
	The Cascade Algorithm
	Example: $phi $ Daubechies $D=4$
	Periodic wavelets
	
	
	
	
	Fast discrete wavelet transform
	
	
	An example
	
	Matrix Representation of the DWT
	Approximation properties
	
	Nonlinear approximation
	First application: Compression
	
	Example
	Second application: denoising
	Linear methods
	
	
	
	Cross validation
	Nonlinear methods
	
	Hard thresholding
	Soft thresholding
	Examples
	
	Universal thresholding (VisuShrink)
	Properties
	References
	Software

