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Outline
Part I
• Overview of the Bioconductor Project.
• Getting started.
• Pre-processing microarray data: Affymetrix and 

spotted arrays.
• Differential gene expression.
• Distances, prediction, and cluster analysis.
Part II
• Reproducible research.
• Annotation and metadata.
• Visualization.
• GO: more advanced usage.

Overview of the 
Bioconductor Project

Bioconductor
• Bioconductor is an open source and open 

development software project for the analysis of 
biomedical and genomic data.

• The project was started in the Fall of 2001 and 
includes 23 core developers in the US, Europe, 
and Australia.

• R and the R package system are used to design 
and distribute software.

• Releases
– v 1.0: May 2nd, 2002, 15 packages.
– v 1.1: November 18th, 2002, 20 packages.
– v 1.2: May 28th, 2003, 30 packages.

• ArrayAnalyzer: Commercial port of Bioconductor
packages in S-Plus.
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Goals
• Provide access to powerful statistical and 

graphical methods for the analysis of genomic 
data.

• Facilitate the integration of biological metadata
(GenBank, GO, LocusLink, PubMed) in the 
analysis of experimental data.

• Allow the rapid development of extensible, 
interoperable, and scalable software.

• Promote high-quality documentation and 
reproducible research.

• Provide training in computational and statistical 
methods.

Bioconductor packages
• Bioconductor software consists of R add-on 

packages. 
• An R package is a structured collection of code 

(R, C, or other), documentation, and/or data for 
performing specific types of analyses. 

• E.g. affy, cluster, graph, hexbin packages 
provide implementations of specialized statistical 
and graphical methods.

Bioconductor packages
Bioconductor provides two main classes of 
software packages.

• End-user packages: 
– aimed at users unfamiliar with R or computer 

programming; 
– polished and easy-to-use interfaces to a wide variety 

of computational and statistical methods for the 
analysis of genomic data.

• Developer packages: aimed at software 
developers, in the sense that they provide  
software to write software. 

Bioconductor packages
• Data packages:

– Biological metadata: mappings between different 
gene identifiers (e.g., AffyID, GO, LocusID, PMID), 
CDF and probe sequence information for Affy arrays.
E.g. hgu95av2, GO, KEGG.

– Experimental data: code, data, and documentation for 
specific experiments or projects.
yeastCC: Spellman et al. (1998) yeast cell cycle. 
golubEsets: Golub et al. (2000) ALL/AML data.

• Course packages: code, data, documentation, 
and labs for the instruction of a particular course. 
E.g. EMBO03 course package.

Bioconductor packages
Release 1.2, May 28th, 2003 

• General infrastructure:
Biobase, DynDoc, reposTools, rhdf5, ruuid, tkWidgets,
widgetTools.

• Annotation:
annotate, AnnBuilder data packages.

• Graphics: 
geneplotter, hexbin.

• Pre-processing Affymetrix oligonucleotide chip data: 
affy, affycomp, affydata, makecdfenv, vsn.

• Pre-processing two-color spotted DNA microarray data: 
limma, marrayClasses, marrayInput, marrayNorm, marrayPlots,
marrayTools, vsn.

• Differential gene expression: 
edd, genefilter, limma, multtest, ROC.

• Graphs and networks:
graph, RBGL, Rgraphviz. 

• Analysis of SAGE data: SAGElyzer. 

N.B. Many new packages in Bioconductor development version.

Ongoing efforts
• Variable (feature) selection;
• Prediction;
• Cluster analysis;
• Cross-validation;
• Multiple testing;
• Quality measures for microarray data;
• Biological sequence analysis;
• Interactions with MAGE-ML: new MAGEML

package poster by Durinck, Allemeersch, 
Moreau, and De Moor;

• etc.

Many methods
already implemented
in CRAN packages.
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Microarray data analysis
CEL, CDF

affy
vsn

.gpr, .Spot

Pre-processing

exprSet

graph
RBGL

Rgraphviz

edd
genefilter

limma
multtest

ROC
+ CRAN

annotate
annaffy

+ metadata 
packagesCRAN

class
cluster
MASS
mva

geneplotter
hexbin

+ CRAN

marray
limma

vsn

Differential 
expression

Graphs &
networks

Cluster
analysis

Annotation

CRAN
class
e1071
ipred

LogitBoost
MASS
nnet

randomForest
rpart

Prediction

Graphics

Microarray data analysis
• Pre-processing of 

– spotted array data with marrayNorm package;
– Affymetrix array data with affy package.

• List of differentially expressed genes from 
genefilter, limma, or multtest packages.

• Prediction of tumor class using randomForest
package. 

• Clustering of genes using cluster package.
• Use of annotate package

– to retrieve and search PubMed abstracts;
– to generate an HTML report with links to LocusLink

for each gene.

marray packages

Pre-processing two-color spotted array data:
• diagnostic plots,
• robust adaptive normalization (lowess, loess).

maPlot + hexbin

maBoxplot

maImage

affy package
Pre-processing oligonucleotide chip data:
• diagnostic plots, 
• background correction, 
• probe-level normalization,
• computation of expression measures.

image plotDensity

plotAffyRNADeg

barplot.ProbeSet

annotate, annafy, and
AnnBuilder

• Assemble and process 
genomic annotation data from 
public repositories.

• Build annotation data 
packages or XML data 
documents.

• Associate experimental data 
in real time to biological 
metadata from web databases 
such as GenBank, GO, 
KEGG, LocusLink, and 
PubMed. 

• Process and store query 
results: e.g., search PubMed
abstracts. 

• Generate HTML reports of 
analyses. 

AffyID
41046_s_at

ACCNUM
X95808

LOCUSID
9203

SYMBOL
ZNF261

GENENAME
zinc finger protein 261

MAP 
Xq13.1

PMID
10486218
9205841
8817323

GO
GO:0003677
GO:0007275
GO:0016021 + many other mappings

Metadata package hgu95av2
mappings between different gene 
identifiers for hgu95av2 chip.

heatmap

mva package



4

Data complexity
• Dimensionality.
• Dynamic/evolving data: e.g., gene annotation, 

sequence, literature.
• Multiple data sources and locations: in-house, 

WWW.
• Multiple data types: numeric, textual, graphical.

No longer Xnxp!

We distinguish between biological metadata and 
experimental metadata.

Experimental metadata
• Gene expression measures

– scanned images, i.e., raw data;
– image quantitation data, i.e., output from image analysis;
– normalized expression measures, i.e., log ratios or Affy

expression measures.
• Reliability/quality information for the expression 

measures.
• Information on the probe sequences printed on the 

arrays (array layout).
• Information on the target samples hybridized to the 

arrays.
• See Minimum Information About a Microarray

Experiment (MIAME) standards and new MAGEML
package.

Biological metadata
• Biological attributes that can be applied to the 

experimental data. 
• E.g. for genes

– chromosomal location;
– gene annotation (LocusLink, GO);
– relevant literature (PubMed).

• Biological metadata sets are large, evolving 
rapidly, and typically distributed via the WWW.

• Tools: annotate, annaffy, and AnnBuilder
packages, and annotation data packages.

OOP
• The Bioconductor project has adopted the 

object-oriented programming (OOP) paradigm 
proposed in J. M. Chambers (1998).
Programming with Data.

• This object-oriented class/method design allows 
efficient representation and manipulation of 
large and complex biological datasets of multiple 
types.

• Tools for programming using the class/method 
mechanism are provided in the R methods
package.

• Tutorial:www.omegahat.org/RSMethods/index.html.

OOP: classes
• A class provides a software abstraction of 

a real world object.  It reflects how we 
think of certain objects and what 
information these objects should contain. 

• Classes are defined in terms of slots which 
contain the relevant data. 

• An object is an instance of a class.
• A class defines the structure, inheritance, 

and initialization of objects.

OOP: methods
• A method is a function that performs an action 

on data (objects). 
• Methods define how a particular function should 

behave depending on the class of its arguments.
• Methods allow computations to be adapted to 

particular data types, i.e., classes.
• A generic function is a dispatcher, it examines its 

arguments and determines the appropriate 
method to invoke.

• Examples of generic functions in R include 
plot, summary, print.
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exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures, genes x 
samples

Sample level covariates, instance of class phenoData 

Name of annotation data 

MIAME information

se.exprs

exprs

notes

• Use of object-oriented programming 
to deal with data complexity.

• S4 class/method mechanism 
(methods package).

Processed Affymetrix or spotted array data

marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes

AffyBatch class

cdfName

exprs

nrow ncol

Probe-level intensity data for a batch of arrays (same CDF)

Dimensions of the array 

Matrices of probe-level intensities and SEs
rows probe cells, columns arrays.

Name of CDF file for arrays in the batch

se.exprs

description

annotation

phenoData

Any notes

Sample level covariates, instance of class phenoData 

Name of annotation data 

MIAME information

notes

Widgets
• Widgets. Small-scale graphical user interfaces 

(GUI), providing point & click access for specific 
tasks.

• E.g. File browsing and selection for data input, 
basic analyses.

• Packages: 
– tkWidgets: dataViewer, fileBrowser, 
fileWizard, importWizard, objectBrowser.

– widgetTools.

Widgets

tkMIAME
tkphenoData

tkSampleNames

Reading in phenoData

Getting Started
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Installation
1. Main R software: download from CRAN 

(cran.r-project.org), use latest release, 
now 1.7.1.

2. Bioconductor packages: download from 
Bioconductor (www.bioconductor.org), 
use latest release, now 1.2.

Available for Linux/Unix, Windows, and 
Mac OS.

Installation
• After installing R, install Bioconductor 

packages using getBioC install script.
• From R

> source("http://www.bioconductor.org/getBioC.R") 
> getBioC()

• In general, R packages can be installed 
using the function install.packages. 

• In Windows, can also use “Packages” pull-
down menus. 

Installing vs. loading
• Packages only need to be installed once .
• But … packages must be loaded with each new 

R session. 
• Packages are loaded using the function 
library. From R 
> library(Biobase)

or the “Packages” pull-down menus in Windows. 
• To update packages, use function 
update.packages or “Packages” pull-down 
menus in Windows. 

• To quit: 
> q()

Documentation and help

• R manuals and tutorials:available from the R website or 
on-line in an R session.

• R on-line help system: detailed on-line documentation, 
available in text, HTML, PDF, and LaTeX formats.
> help.start()
> help(lm)
> ?hclust
> apropos(mean)
> example(hclust)
> demo()
> demo(image)

Short courses

• Bioconductor short courses
– modular training segments on software and 

statistical methodology;
– lectures notes, computer labs, and course 

packages available on WWW for self-
instruction.

Vignettes
• Bioconductor has adopted a new documentation 

paradigm, the vignette.
• A vignette is an executable document consisting 

of a collection of code chunks and 
documentation text chunks. 

• Vignettes provide dynamic, integrated, and 
reproducible statistical documents that can be 
automatically updated if either data or analyses 
are changed.

• Vignettes can be generated using the Sweave
function from the R tools package.
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Vignettes
• Each Bioconductor package contains at 

least one vignette, providing task-oriented 
descriptions of the package's functionality.

• Vignettes are located in the doc 
subdirectory of an installed package and 
are accessible from the help browser.

• Vignettes can be used interactively.
• Vignettes are also available separately 

from the Bioconductor website.

Vignettes
• Tools are being developed for managing 

and using this repository of step-by-step 
tutorials
– Biobase: openVignette – Menu of 

available vignettes and interface for viewing 
vignettes (PDF).

– tkWidgets: vExplorer – Interactive use of 
vignettes.

– reposTools.

Vignettes

vExplorer

• HowTo’s: Task-oriented  
descriptions of package functionality.
• Executable documents consisting of 
documentation text and code chunks.
• Dynamic, integrated, and 
reproducible statistical documents.
• Can be used interactively –
vExplorer.
• Generated using Sweave (tools
package).

Sweave
• The Sweave system allows the generation 

of dynamic, integrated, and reproducible 
statistical documents intermixing text, 
code, and code output (textual and 
graphical).

• Functions are available in the R tools
package.

• See ? Sweave and manual
www.ci.tuwien.ac.at/~leisch/Sweave/.

Sweave: input
• Input: a text file which consists of a 

sequence of code chunks and 
documentation text chunks (noweb file).
– Documentation chunks

• start with @
• text in a markup language like LaTeX.

– Code chunks
• start with <<name>>=
• R or S-Plus code.

– File extension: .rnw, .Rnw, .snw, .Snw.

Sweave: output

• Output: a single document, e.g., .tex file or 
.pdf file containing
– the documentation text,
– the R code,
– the code output: text and graphs.

• The document can be automatically 
regenerated whenever the data, code, or 
documentation text change.

• Stangle or tangleToR: extract only the 
code chunks.
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Sweave
main.Rnw

main.tex fig.pdffig.eps

main.dvi

main.ps

main.pdf

Sweave

latex

dvips

pdflatex

Stangle

main.R Pre-processing

Pre-processing packages

• affy: Affymetrix oligonucleotide chips.
• marray, limma: Spotted DNA microarrays.
• vsn: Variance stabilization for both types of arrays.

Reading in intensity data, diagnostic plots, 
normalization, computation of expression measures. 

The packages start with very different data structures, 
but produce similar objects of class exprSet.

One can then use other Bioconductor and CRAN 
packages, e.g., mva, genefilter, geneplotter.

marray packages

maNorm
maNormMain
maNormScale

Class marrayRaw

Class marrayNorm

Class exprSet

as(swirl.norm, "exprSet")

Save data to file using write.exprs or continue 
analysis using other Bioconductor and CRAN packages 

Image
quantitation
data,
e.g., .gpr, .Spot, .gal files

marray packages

• marrayClasses: 
– class definitions for spotted DNA microarray data;
– basic methods for manipulating microarray objects: printing, 

plotting, subsetting, class conversions, etc.
• marrayInput: 

– reading in intensity data and textual data describing probes and
targets;

– automatic generation of microarray data objects;
– widgets for point & click interface.

• marrayPlots: diagnostic plots.
• marrayNorm: robust adaptive location and scale normalization 

procedures (lowess, loess).
• marrayTools: miscellaneous tools for spotted array data.

marrayLayout class

maNspots

maNgr maNgc

maNsr maNsc

maSub

maPlate

maControls

maNotes

Array layout parameters

Total number of spots

Dimensions of spot matrices

Dimensions of grid matrix

Current subset of spots

Plate IDs for each spot

Control status labels for each spot

Any notes
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marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes

marrayNorm class

maA

maW

maMloc maMscale

maM

Post-normalization intensity data for a batch of arrays

Matrix of normalized intensity log ratios, M

Matrix of location and scale normalization values

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences 
- marrayInfo
Description of target samples - marrayInfo

Any notes

Matrix of average log intensities, A

maNormCall Function call

marrayInput package

• marrayInput provides functions for reading  
microarray data into R and creating microarray
objects of class marrayLayout, marrayInfo, and 
marrayRaw.

• Input
– Image quantitation data, i.e., output files from 

image analysis software.
E.g. .gpr for GenePix, .spot for Spot. 

– Textual description of probe sequences and target 
samples.
E.g. gal files, god lists.

marrayInput package
• Widgets for graphical user 

interface
widget.marrayLayout,
widget.marrayInfo,
widget.marrayRaw.

marrayPlots package
• See demo(marrayPlots).
• Diagnostic plots of spot statistics. 

E.g. Red and green log intensities, intensity log 
ratios M, average log intensities A, spot area.
– maImage: 2D spatial color images. 
– maBoxplot: boxplots.
– maPlot: scatter-plots with fitted curves and 

text highlighted. 
• Stratify plots according to layout 

parameters such as print-tip-group, plate.
E.g. MA-plots with loess fits by print-tip-
group.

2D spatial images
maImage

Cy3 background intensity Cy5 background intensity
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Boxplots by print-tip-group
maBoxplot

Intensity 
log ratio, M

MA-plot by print-tip-group
maPlot

M = log2R - log2G vs.  A = (log2R + log2G)/2

hexbin

marrayNorm package
• maNormMain: main normalization function, 

robust adaptive location and scale 
normalization (lowess, loess) for batch of 
arrays
– intensity or A-dependent location normalization 

(maNormLoess);
– 2D spatial location normalization (maNorm2D);
– median location normalization (maNormMed);
– scale normalization using MAD (maNormMAD);
– composite normalization;
– your own normalization function.

• maNorm: simple wrapper function.
• maNormScale: simple wrapper function 

for scale normalization.

marrayTools package
• The marrayTools package provides 

additional functions for handling two-color 
spotted microarray data. 

• The spotTools and gpTools functions start 
from Spot and GenePix image analysis output 
files, respectively, and automatically 
– read in these data into R, 
– perform standard normalization (within print-tip-

group loess), 
– create a directory with a standard set of diagnostic 

plots (jpeg format) and tab delimited text files of 
quality measures, normalized log ratios M, and 
average log intensities A. 

swirl dataset
• Microarray layout: 

– 8,448 probes (768 controls);
– 4 x 4 grid matrix; 
– 22 x 24 spot matrices.

• 4 hybridizations: swirl mutant vs. wild type mRNA.
• Data stored in object of class marrayRaw
> data(swirl)
> maInfo(maTargets(swirl))[,3:4]
experiment Cy3 experiment Cy5
1          swirl      wild type
2      wild type          swirl
3          swirl      wild type
4      wild type          swirl

Affymetrix chips
• Each gene or portion of a gene is represented by 16 to 20 

oligonucleotides of 25 base-pairs, i.e., 25-mers.

• Probe: a 25-mer.
• Perfect match (PM): A 25-mer complementary to a reference 

sequence of interest (e.g., part of a gene).
• Mismatch (MM): same as PM but with a single homomeric base 

change for the middle (13th) base (transversion purine <-> 
pyrimidine, G <->C, A <->T) . 

• Probe-pair: a (PM,MM) pair.
• Probe-pair set: a collection of probe-pairs (16 to 20) related to a 

common gene or fraction of a gene. 
• Affy ID: an identifier for a probe-pair set.
• The purpose of the MM probe design is to measure non-specific 

binding and background noise.
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Affymetrix chips Affymetrix chips

• DAT file: Image file, ~10^7 pixels, ~50 
MB.

• CEL file: Cell intensity file, probe level 
PM and MM values.

• CDF (Chip Description File): Describes 
which probes belong to which probe-
pair set and the location of the probes.

affy package

rma
expresso
express

Class AffyBatch

Class exprSet

Save data to file using write.exprs or continue 
analysis using other Bioconductor and CRAN packages 

CEL and CDF
files

affy package 

• Class definitions for probe-level data: 
AffyBatch, ProbSet, Cdf, Cel.

• Basic methods for manipulating microarray
objects: printing, plotting, subsetting.

• Functions and widgets for data input from CEL
and CDF files, and automatic generation of 
microarray data objects.

• Diagnostic plots: 2D spatial images, density 
plots, boxplots, MA-plots.

affy package

• Background estimation.
• Probe-level normalization: quantile and curve-

fitting normalization (Bolstad et al., 2003).
• Expression measures: MAS 4.0 AvDiff, MAS 5.0 

Signal, MBEI (Li & Wong, 2001), RMA (Irizarry 
et al., 2003).

• Main functions: ReadAffy, rma, expresso, 
express.

AffyBatch class

cdfName

exprs

nrow ncol

Probe-level intensity data for a batch of arrays (same CDF)

Dimensions of the array 

Matrices of probe-level intensities and SEs
rows probe cells, columns arrays.

Name of CDF file for arrays in the batch

se.exprs

description

annotation

phenoData

Any notes

Sample level covariates, instance of class phenoData 

Name of annotation data 

MIAME information

notes
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Other affy classes
• ProbeSet: PM, MM intensities for individual 

probe sets.
– pm: matrix of PM intensities for one probe set, 

rows 16-20 probes, columns arrays. 
– mm: matrix of MM intensities for one probe set, 

rows 16-20 probes, columns arrays. 
Apply probeset to AffyBatch object to get a list of 
ProbeSet objects.

• Cel: Single array cel intensity data.
• Cdf: Information contained in a CDF file.

Reading in data: ReadAffy

Creates object 
of class AffyBatch 

Accessing PM/MM data
• probeNames: method for accessing 

AffyIDs corresponding to individual 
probes.

• pm, mm: methods for accessing probe-level 
PM and MM intensities probes x arrays 
matrix.

• Can use on AffyBatch objects.

Diagnostic plots
• See demo(affy).
• Diagnostic plots of probe-level intensities, PM 

and MM.
– image: 2D spatial color images of log intensities 

(AffyBatch, Cel).
– boxplot: boxplots of log intensities 

(AffyBatch).
– mva.pairs: scatter-plots with fitted curves (apply 
exprs, pm, or mm to AffyBatch object).

– hist: density plots of log intensities 
(AffyBatch).

image
hist

hist(Dilution,col=1:4,type="l",lty=1,lwd=3)
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boxplot

boxplot(Dilution,col=1:4)

mva.pairs

Expression measures
• expresso: Choice of common methods for 

– background correction: bgcorrect.methods
– normalization: normalize.AffyBatch.methods
– probe specific corrections: pmcorrect.methods
– expression measures: express.summary.stat.methods.

• rma: Fast implementation of RMA (Irizarry et al., 2003): 
model-based background correction, quantile
normalization, median polish expression measures.

• express: Implementing your own methods for 
computing expression measures.

• normalize: Normalization procedures in 
normalize.AffyBatch.methods or 
normalize.methods(object).

Expression meassures: 
expresso

expresso(widget=TRUE)

Probe sequence analysis
• Examine probe intensities based on 

location relative to 5’ end of the RNA 
sequence of interest.

• Expect probe intensities to be lower at 5’ 
end compared to 3’ end of mRNA.

• E.g.
deg <- AffyRNAdeg(Dilution)
plotAffyRNAdeg(deg)

CDF data packages
• Data packages containing CDF information are 

available at www.bioconductor.org.
• Packages contain environment objects, which 

provide mappings between AffyIDs and matrices 
of probe locations,

rows probe-pairs, 
columns PM, MM
(e.g., 20X2 matrix for hu6800). 

• cdfName slot of AffyBatch.
• makecdfenv package.
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Other packages
• affycomp: assessment of Affymetrix

expression measures.
• affydata: sample Affymetrix datasets.
• annaffy: annotation functions. 
• gcrma: background adjustment using 

sequence information.
• makecdfenv: creating CDF environments 

and packages.

Differential Gene Expression

Combining data across arrays

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g., from RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...

-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...

…           …           …           …           …

Data on G genes for n arrays

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…

Combining data across arrays

… but the columns have structure, 
determined by the experimental design.

E
D

F

BA

C

E

Combining data across arrays

• Spotted array factorial experiment. Each 
column corresponds to a pair of mRNA 
samples with different drug x dose x time 
combinations.

• Clinical trial. Each column corresponds to a 
patient, with associated clinical outcomes, 
such as survival and response to treatment.

• Linear models and extensions thereof can 
be used to effectively combine data across 
arrays for complex experimental designs.

Gene filtering
• A very common task in microarray data analysis 

is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g., absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression patterns.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.
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Gene filtering
• Clinical trial. Filter genes based on 

association with survival, e.g., using a Cox 
model.

• Factorial experiment. Filter genes based 
on interaction between two treatments, 
e.g., using 2-way ANOVA.

• Time-course experiment. Filter genes 
based on periodicity of expression pattern, 
e.g., using Fourier transform.

• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) of a 
matrix or of an exprSet object.

• There are two main functions, filterfun and 
genefilter, for assembling and applying the 
filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package

genefilter:
separation of tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, where TRUE
indicates genes that are retained.

4. Apply this vector to the exprSet object to 
obtain a microarray object corresponding to 
the subset of interesting genes.

genefilter: 
supplied filters

• kOverA – select genes for which k samples 
have expression measures larger than A.

• gapFilter – select genes with a large IQR or 
gap (jump) in expression measures across 
samples.

• ttest – select genes according to t-test 
nominal p-values.

• Anova – select genes according to ANOVA 
nominal p-values.

• coxfilter – select genes according to Cox 
model nominal p-values.

• It is very simple to write your own filters --
use the supplied filtering functions as 
templates.

• The basic idea is to rely on lexical scoping
to provide values (bindings) for the 
variables that are needed to do the 
filtering. 

genefilter: 
custom filters

1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filtering function
wh <- genefilter(marrayDat, ff)

4. Use wh to obtain a microarray object for the 
relevant gene subset

mySub <- marrayDat[wh,]

genefilter: 
How to?
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Differential expression

• Identify genes whose expression levels are 
associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. Slope, interaction, or difference in means.

• Testing: assess the statistical significance of 
the observed associations.

Multiple hypothesis testing
• Large multiplicity problem: thousands of 

hypotheses are tested simultaneously!
– Increased chance of false positives. 
– E.g. Chance of at least one p-value < α for G 

independent tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when 
assessing the statistical significance of the 
observed associations.

G)−− α1(1

Multiple hypothesis testing 
• Define an appropriate Type I error or false 

positive rate.
• Apply multiple testing procedures that 

– control this error rate under the true unknown data 
generating distribution,

– are powerful (few false negatives),
– take into account the joint distribution of the test 

statistics.
• Report adjusted p-values for each gene which 

reflect the overall Type I error rate for the 
experiment.

• Use resampling methods to deal with the  
unknown joint distribution of the test statistics.

multtest package

• Multiple testing procedures for controlling
– Family-Wise Error Rate (FWER): Bonferroni, Holm (1979), 

Hochberg (1986), Westfall & Young (1993) maxT and minP;
– False Discovery Rate (FDR):  Benjamini & Hochberg (1995), 

Benjamini & Yekutieli (2001).
• Tests based on t- or F-statistics for one- and two-factor 

designs.
• Permutation procedures for estimating adjusted p-

values. 
• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.

limma package
• Fitting of gene-wise linear models to 

estimate log ratios between two or more 
target samples simultaneously: 
lm.series, rlm.series, glm.series
(handle replicate spots).

• ebayes:  moderated t-statistics and log-
odds of differential expression by empirical 
Bayes shrinkage of the standard errors 
towards a common value.

Distances, Prediction, and 
Cluster Analysis
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Supervised vs. unsupervised 
learning

• Unsupervised learning a.k.a. cluster analysis
– the classes are unknown a priori; 
– the goal is to discover these classes from the data.

• Supervised learning a.k.a. class prediction
– the classes are predefined;
– the goal is to understand the basis for the 

classification from a set of labeled objects and to build 
a predictor for future unlabeled observations.

• Details in lectures from Dec. 2002 course at 
Fred Hutchinson Cancer Research Center.

Distances
• Microarray data analysis often involves

– clustering genes and/or samples;
– classifying genes and/or samples.

• Both types of analyses are based on a 
measure of distance (or similarity) 
between genes or samples.

• R has a number of functions for computing 
and plotting distance and similarity 
matrices.

Distances

• Distance functions
– dist (mva): Euclidean, Manhattan, Canberra, binary;
– daisy (cluster).

• Correlation functions
– cor, cov.wt.

• Plotting functions
– image;
– plotcorr (ellipse);
– plot.cor, plot.mat (sma).

Correlation matrices

plotcorr function from ellipse package

Correlation matrices

plotcorr function from ellipse package

Correlation matrices

plot.cor function from sma package
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Multidimensional scaling
• Given any n x n distance matrix D, 

multidimensional scaling (MDS) is concerned 
with identifying n points in Euclidean space with 
a similar distance structure D'.    

• The purpose is to provide a lower dimensional 
representation of the distances which conveys 
information on the relationships between the n
objects, such as the existence of clusters or one-
dimensional structure in the data (e.g., 
seriation). 

MDS
• There are different approaches for reducing 

dimensionality, depending on how one defines 
similarity between the old and new distance matrices 
for the n objects, i.e., depending on the objective or 
stress function S that one seeks to minimize.
– Least-squares scaling

– Sammon mapping places more emphasis on 
smaller dissimilarities (and hence should be 
preferred for clustering methods)

–
– Shepard-Kruskal non-metric scaling is based on 

ranks, i.e., the order of the distances is more 
important than their actual values.

( ) 2/12)'()',( ∑ −= ijij ddDDS
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MDS and PCA
• When the distance matrix D is the Euclidean distance 

matrix between the rows of an n x m matrix X, there is a 
duality between principal component analysis (PCA) and 
MDS.

• The k-dimensional classical solution to the MDS problem 
is given by the centered scores of the n objects on the 
first k principal components.

• The classical solution of MDS in k-dimensional space 
minimizes the sum of squared differences between the 
entries of the new and old distance matrices, i.e., is 
optimal for least-squares scaling.

MDS
• As with PCA, the quality of the 

representation will depend on the 
magnitude of the first k eigenvalues.

• One should choose a value for k that is 
small enough for ease of representation, 
but also corresponds to a substantial 
“proportion of the distance matrix 
explained”.

MDS
• N.B. The MDS solution reflects not only 

the choice of a distance function, but also 
the features selected. 

• If features (genes) are selected to 
separate the data into two groups (e.g., on 
the basis of two-sample t-statistics), it 
should come as no surprise that an MDS 
plot has two groups. In this instance, MDS 
is not a confirmatory approach.

R MDS software

• cmdscale: Classical solution to MDS, in 
package mva.

• sammon: Sammon mapping, in package 
MASS.

• isoMDS: Shepard-Kruskal's non-metric 
MDS, in package MASS.
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R cluster analysis packages
• cclust: convex clustering methods.
• class: self-organizing maps (SOM).
• cluster: 

– AGglomerative NESting (agnes), 
– Clustering LARe Applications (clara), 
– DIvisive ANAlysis (diana), 
– Fuzzy Analysis (fanny),  
– MONothetic Analysis (mona), 
– Partitioning Around Medoids (pam).

• e1071: 
– fuzzy C-means clustering (cmeans), 
– bagged clustering (bclust).

• flexmix: flexible mixture modeling.  
• fpc: fixed point clusters, clusterwise regression and discriminant plots.
• GeneSOM: self-organizing maps.
• mclust, mclust98: model-based cluster analysis.
• mva: 

– hierarchical clustering (hclust), 
– k-means (kmeans).

• Specialized summary, plot, and print methods for clustering results. 

Download
from CRAN

pam and clusplot functions from cluster package

PAM
K=2 K=3

pam and plot functions from cluster package

PAM
K=2 K=3

hclust function from 
mva package

Hierarchical clustering
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Heatmaps

heatmap function from mva package

Dendrograms
• N.B. While dendrograms are appealing because 

of their apparent ease of interpretation, they can 
be misleading.

• First, the dendrogram corresponding to a given 
hierarchical clustering is not unique, since for 
each merge one needs to specify which subtree
should go on the left and which on the right ---
there are 2^(n-1) choices.

• The default in the R function hclust is to order 
the subtrees so that the tighter cluster is on the 
left.

Dendrograms
• Second, dendrograms impose structure on 

the data, instead of revealing structure in 
these data.

• Such a representation will be valid only to 
the extent that the pairwise distances 
possess the hierarchical structure imposed 
by the clustering algorithm. 

Dendrograms
• The cophenetic correlation coefficient can be 

used to measure how well the hierarchical 
structure from the dendrogram represents the 
actual distances. 

• This measure is defined as the correlation 
between the n(n-1)/2 pairwise distances 
between observations and their cophenetic
dissimilarities, i.e., the between cluster distances 
at which two observations are first joined 
together in the same cluster.

• Function cophenetic in  mva package.

Dendrograms

Original data, 
coph corr = 0.74.

Randomized data 
(perm. wi features),
coph corr = 0.57.

Prediction
• Predict an outcome on the basis of 

observable explanatory variables or features.

• Outcome:
– Polychotomous: tumor class, type of bacterial 

infection, response to treatment --- classifier.
– Continuous: survival.
– Possibly censored!

• Features: gene expression measures, 
covariates such as age, sex.

Predictor OutcomeFeatures
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Class prediction
• Old and extensive literature on class 

prediction, in statistics and machine learning.
• Examples of classifiers 

– nearest neighbor classifiers (k-NN);
– discriminant analysis: linear, quadratic, logistic;
– neural networks;
– classification trees;
– support vector machines.

• Aggregated classifiers: bagging and boosting.
• Comparison on microarray data: 

simple classifiers like k-NN and naïve Bayes
perform remarkably well.

R class prediction packages

• class: 
– k-nearest neighbor (knn), 
– learning vector quantization (lvq).

• classPP: projection pursuit.
• e1071: support vector machines (svm).
• ipred: bagging, resampling based estimation of prediction error.
• knnTree: k-nn classification with variable selection inside leaves of a 

tree.
• LogitBoost: boosting for tree stumps.
• MASS: linear and quadratic discriminant analysis (lda, qda). 
• mlbench: machine learning benchmark problems.
• nnet: feed-forward neural networks and multinomial log-linear models.
• pamR: prediction analysis for microarrays.
• randomForest: random forests.
• rpart: classification and regression trees.
• sma: diagonal linear and quadratic discriminant analysis, naïve Bayes

(stat.diag.da).

Download
from CRAN

Performance assessment
• Classification error rates, or related 

measures, are usually reported
– to compare the performance of different 

classifiers; 
– to support statements such as 

“clinical outcome X for cancer Y can be predicted 
accurately based on gene expression measures”. 

• Classification error rates can be estimated by 
resampling, e.g., bootstrap or cross-
validation.

Performance assessment
• It is essential to take into account feature 

selection and other training decisions in 
the error rate estimation process.
E.g. Number of neighbors in k-NN, kernel in SVMs.

• Otherwise, error estimates can be 
severely biased downward, i.e., overly 
optimistic.

Other important issues
• Loss function;
• Censoring;
• Standardization;
• Distance function;
• Feature selection;
• Class priors;
• Binary vs. polychotomous classification.


