
Part III. Overview of the
Bioconductor project

Sandrine Dudoit and
Robert Gentleman

© Copyright 2002, all rights reserved

Biological question
Differentially expressed genes
Sample class prediction etc.

Testing

Biological verification
and interpretation

Microarray experiment

Estimation

Experimental design

Image analysis

Normalization

Clustering Prediction

Expression quantification Pre-processing

Role of Statistics

A
n
a
l
y
s
i
s

Everywhere …

• Statistical design and analysis:
– image analysis, normalization, estimation, testing,

clustering, prediction, etc.

• Integration with biological information
resources, in house and external databases:
– gene annotation (GenBank, LocusLink);
– literature (PubMed);
– graphical (pathways, chromosome maps).

Statistical computing

Computing needs
• Access to a broad range of statistical and

graphical methods:
diagnostic plots, linear and non-linear modeling,
survival analysis, multiple testing, model selection,
prediction, cluster analysis, resampling, etc.

• Tools for integrating biological metadata in
the analysis of microarray data.

• Extensible, scalable, and interoperable
software.

Bioconductor

• Bioconductor is an open source and
open development software project for
the analysis and comprehension of
genomic data.

• Software and documentation are
available from www.bioconductor.org.

Bioconductor
The broad goals of the project are
• to enable sound and powerful statistical

analyses in genomics;
• to provide a computing platform that

allows the rapid design and deployment
of high-quality software;

• to develop a computing environment for
both biologists and statisticians.

Bioconductor
• The project was started in the Fall of 2001 by

Robert Gentleman, at the Biostatistics Unit of
the Dana Farber Cancer Institute.

• There are currently 21 core developers.

• The first release of 15 packages occurred on
May 2nd, 2002.

R

• Most of the early developments are in
the form of R packages.

• R is a widely used open source
language and environment for statistical
computing and graphics
- GNU’s S-Plus.

R
• R is available from www.r-project.org.
• R is available for Unix, Windows, and

Macintosh computers.
• Comprehensive R Archive Network -

CRAN - www.cran.r-project.org:
repository of software packages for a
broad range of statistical and graphical
techniques.

Bioconductor packages
Release 1.0, May 2nd, 2002

• General infrastructure:
Biobase, rhdf5, tkWidgets.

• Annotation:
annotate, AnnBuilder.

• Graphics:
geneplotter.

• Pre-processing for Affymetrix oligonucleotide chip data:
affy.

• Pre-processing for cDNA microarray data:
marrayClasses, marrayInput, marrayNorm, marrayPlots.

• Differential gene expression:
edd, genefilter, multtest, ROC.

Bioconductor
• Object-oriented class/method design. Allows

efficient representation and manipulation of
large and complex biological datasets of
multiple types.

• Widgets. Small-scale graphical user
interfaces, allowing point & click access to
specific analysis tasks.

• E.g. File browsing and selection for data
input.

Bioconductor
• Interactive tools for linking experimental

results to annotation and literature WWW
resources in real time.
E.g. PubMed, GenBank, LocusLink.

• Scenario. For a list of differentially expressed
genes obtained from multtest or
genefilter, use the annotate package
– to retrieve and search PubMed abstracts for these

genes;
– to generate an HTML report with links to

LocusLink for each gene.

Bioconductor training
Extensive documentation and training resources for
R and Bioconductor are available on the WWW.

• R manuals and tutorials are available from CRAN.
• R help system

– detailed on-line documentation, available in text, HTML,
PDF, and LaTeX formats;

– e.g. help(genefilter), ?pubmed.
• R demo system

– user-friendly interface for running demonstrations of R
scripts;

– e.g. demo(marrayPlots), demo(affy).

Bioconductor training
• R vignette system

– comprehensive repository of step-by-step tutorials covering a wide
variety of computational objectives in /doc subdirectory;

– documents generated using the Sweave function from the tools
package;

– integrated statistical documents intermixing text, code, and code
output (textual and graphical);

– documents can be automatically updated if either data or analyses
are changed.

• Bioconductor short courses
– modular training segments on software and statistical methodology;
– lectures and computer labs available on WWW for self-instruction.

R programming
• In order to deliver high quality software, the

Bioconductor project relies on a few
programming techniques that might not be
familiar
– environments and closures;
– object oriented programming.

• We review these here for interested
programmers (understanding them is not
essential but is often very helpful).

Environments and closures
• An environment is an object that contains bindings

between symbols and values.
• It is very similar to a hash table.
• Environments can be accessed using the following

functions
– get a listing of objects in the environment e
ls(env=e)

– get the value of the object with name x in the environment e
get(“x”, env=e)

– assign to the name x the value y in the environment e
assign(“x”,y,env=e)

• Since these operations are used a great
deal in Bioconductor we have provided
two helper functions
– multiget
– multiassign

• These functions get and assign multiple
values into the specified environment.

Environments and closures

• Environments can be associated with
functions.

• When an environment is associated with a
function, then that environment is used to
obtain values for any unbound variables.

• The term closure refers to the coupling of the
function body with the enclosing environment.

• The annotate, genefilter, and other
packages take advantage of environments
and closures.

Environments and closures

x <- 4

e1 <- new.env()
assign(“x”,10, env=e1)
f <- function() x
environment(f) <- e1

x # returns 4
f() # returns 10!

Environments and closures

Object oriented
programming

• The Bioconductor project has adopted
the OOP paradigm presented in
Programming with Data, J. M.
Chambers, 1998.

• Tools for programming using the
class/method mechanism are provided
in the methods package.

OOP
• A class provides a software abstraction of a

real world object. It reflects how we think of
certain objects and what information these
objects should contain.

• A class defines the structure, inheritance, and
initialization of objects.

• Classes are defined in terms of slots which
contain the relevant data.

• An object is an instance of a class.

OOP
• A method is a function that performs an action

on data (objects).

• A generic function is a dispatcher, it examines its
arguments and determines the appropriate
method to invoke.

• Examples of generic functions include plot,
summary, print.

OOP
• It is important to realize that when calling a

generic function (such as plot), the actions
performed depend on the class of the
arguments.

• Methods define how a particular function
should behave depending on the class of its
arguments.

• Methods allow computations to be adapted to
particular data types, i.e., classes.

OOP

• The methods package contains a
number of functions for defining new
classes and methods (e.g. setClass,
setMethod) and for working with these
classes and methods.

• A tutorial is available at
http://www.omegahat.org/RSMethods/index.html

OOP

• To obtain documentation (on-line help)
about
– a class: class?classname

so, class?exprSet, will display the help
file for the exprSet class.

– a method: methods?methodname
so, methods?print, will display the help
file for the print methods.

OOP
> x <- 1:10
> y <- 2*x + 1 + rnorm(10)

> class(x)
[1] "integer"
> plot(x,y)

> fit <- lm(y ~ x)
> class(fit)
[1] "lm"
> plot(fit)

OOP
> setClass(“simple",

representation(x="numeric",y="matrix“),
prototype = list(x=numeric(),y=matrix(0)))

> z <- new("simple", x=1:10,
y=matrix(rnorm(50),10,5))

> z@x
[1] 1 2 3 4 5 6 7 8 9 10

> setMethod("plot",
signature(x="simple", y="missing"),
function(x, y,...)
plot(slot(x,"x"),slot(x,"y")[,1]))

> plot(z)

