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Everywhere …

• Statistical design and analysis: 
– image analysis, normalization, estimation, testing, 

clustering, prediction, etc.

• Integration with biological information 
resources, in house and external databases:
– gene annotation (GenBank, LocusLink);
– literature (PubMed);
– graphical (pathways, chromosome maps).

Statistical computing



Computing needs
• Access to a broad range of statistical and  

graphical methods: 
diagnostic plots, linear and non-linear modeling, 
survival analysis, multiple testing, model selection, 
prediction, cluster analysis, resampling, etc.

• Tools for integrating biological metadata in 
the analysis of microarray data.

• Extensible, scalable, and interoperable 
software.



Bioconductor

• Bioconductor is an open source and 
open development software project for 
the analysis and comprehension of 
genomic data.

• Software and documentation are 
available from www.bioconductor.org.



Bioconductor
The broad goals of the project are 
• to enable sound and powerful statistical 

analyses in genomics;
• to provide a computing platform that 

allows the rapid design and deployment 
of high-quality software;

• to develop a computing environment for 
both biologists and statisticians.



Bioconductor
• The project was started in the Fall of 2001 by 

Robert Gentleman, at the Biostatistics Unit of 
the Dana Farber Cancer Institute.

• There are currently 21 core developers.

• The first release of 15 packages occurred on 
May 2nd, 2002.



R

• Most of the early developments are in 
the form of R packages.

• R is a widely used open source 
language and environment for statistical 
computing and graphics 
- GNU’s S-Plus.



R
• R is available from www.r-project.org.
• R is available for Unix, Windows, and 

Macintosh computers.
• Comprehensive R Archive Network -

CRAN - www.cran.r-project.org:  
repository of software packages for a 
broad range of statistical and graphical 
techniques. 



Bioconductor packages
Release 1.0, May 2nd, 2002

• General infrastructure:
Biobase, rhdf5, tkWidgets.

• Annotation:
annotate, AnnBuilder.

• Graphics: 
geneplotter.

• Pre-processing for Affymetrix oligonucleotide chip data: 
affy.

• Pre-processing for cDNA microarray data: 
marrayClasses, marrayInput, marrayNorm, marrayPlots.

• Differential gene expression: 
edd, genefilter, multtest, ROC.



Bioconductor
• Object-oriented class/method design. Allows 

efficient representation and manipulation of 
large and complex biological datasets of 
multiple types.  

• Widgets. Small-scale graphical user 
interfaces, allowing point & click access to 
specific analysis tasks. 

• E.g. File browsing and selection for data 
input. 



Bioconductor
• Interactive tools for linking experimental 

results to annotation and literature WWW 
resources in real time. 
E.g. PubMed, GenBank, LocusLink.

• Scenario. For a list of differentially expressed 
genes obtained from multtest or 
genefilter, use the annotate package 
– to retrieve and search PubMed abstracts for these 

genes;
– to generate an HTML report with links to 

LocusLink for each gene.



Bioconductor training
Extensive documentation and training resources for 
R and Bioconductor are available on the WWW. 

• R manuals and tutorials are available from CRAN.
• R help system

– detailed on-line documentation, available in text, HTML, 
PDF, and LaTeX formats;

– e.g. help(genefilter), ?pubmed. 
• R demo system

– user-friendly interface for running demonstrations of R 
scripts;

– e.g. demo(marrayPlots), demo(affy).



Bioconductor training
• R vignette system

– comprehensive repository of step-by-step tutorials covering a wide 
variety of computational objectives in /doc subdirectory; 

– documents generated using the Sweave function from the  tools
package;

– integrated statistical documents intermixing text, code, and code 
output (textual and graphical);

– documents can be automatically updated if either data or analyses 
are changed.

• Bioconductor short courses
– modular training segments on software and statistical methodology;
– lectures and computer labs available on WWW for self-instruction.



R programming
• In order to deliver high quality software, the 

Bioconductor project relies on a few 
programming techniques that might not be 
familiar
– environments and closures;
– object oriented programming.

• We review these here for interested 
programmers (understanding them is not 
essential but is often very helpful).



Environments and closures
• An environment is an object that contains bindings 

between symbols and values.
• It is very similar to a hash table.
• Environments can be accessed using the following 

functions
– get a listing of objects in the environment e
ls(env=e)

– get the value of the object with name x in the environment e
get(“x”, env=e)

– assign to the name x the value y in the environment e
assign(“x”,y,env=e)



• Since these operations are used a great 
deal in Bioconductor we have provided 
two helper functions
– multiget
– multiassign

• These functions get and assign multiple 
values into the specified environment.

Environments and closures



• Environments can be associated with 
functions.

• When an environment is associated with a 
function, then that environment is used to 
obtain values for any unbound variables.

• The term closure refers to the coupling of the 
function body with the enclosing environment. 

• The annotate, genefilter, and other 
packages take advantage of environments 
and closures.

Environments and closures



x <- 4

e1 <- new.env() 
assign(“x”,10, env=e1)
f <- function() x
environment(f) <- e1

x   # returns 4
f() # returns 10!

Environments and closures



Object oriented 
programming

• The Bioconductor project has adopted 
the OOP paradigm presented in 
Programming with Data, J. M. 
Chambers, 1998.

• Tools for programming using the 
class/method mechanism are provided 
in the  methods package.



OOP
• A class provides a software abstraction of a 

real world object.  It reflects how we think of 
certain objects and what information these 
objects should contain. 

• A class defines the structure, inheritance, and 
initialization of objects.

• Classes are defined in terms of slots which 
contain the relevant data. 

• An object is an instance of a class.



OOP
• A method is a function that performs an action 

on data (objects). 

• A generic function is a dispatcher, it examines its 
arguments and determines the appropriate 
method to invoke.

• Examples of generic functions include plot, 
summary, print.



OOP
• It is important to realize that when calling a 

generic function (such as plot), the actions 
performed depend on the class of the 
arguments.

• Methods define how a particular function 
should behave depending on the class of its 
arguments.

• Methods allow computations to be adapted to 
particular data types, i.e., classes.



OOP

• The methods package contains a 
number of functions for defining new 
classes and methods (e.g. setClass, 
setMethod) and for working with these 
classes and methods.

• A tutorial is available at  
http://www.omegahat.org/RSMethods/index.html



OOP

• To obtain documentation (on-line help) 
about 
– a class: class?classname

so, class?exprSet, will display the help 
file for the exprSet class.

– a method: methods?methodname
so, methods?print, will display the help 
file for the print methods.



OOP
> x <- 1:10
> y <- 2*x + 1 + rnorm(10)

> class(x)
[1] "integer"
> plot(x,y)

> fit <- lm(y ~ x)
> class(fit)
[1] "lm"
> plot(fit)



OOP
> setClass(“simple",     

representation(x="numeric",y="matrix“),
prototype = list(x=numeric(),y=matrix(0)))

> z <- new("simple", x=1:10, 
y=matrix(rnorm(50),10,5))

> z@x
[1]  1  2  3  4  5  6  7  8  9 10

> setMethod("plot", 
signature(x="simple", y="missing"), 
function(x, y,...)
plot(slot(x,"x"),slot(x,"y")[,1]))

> plot(z)


