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Learning from examples

Gene expression is a complex process we can not describe explicitely.
=⇒ try to learn patterns from examples.

Given: X = {xi, yi}ni=1 training set patients you’ve already seen

consisting of
xi ∈ Rg points expression profiles
yi ∈ {+1,−1} labels 2 kinds of cancer

Goal: Learn a decision function that describes the data well.

fX : R
g 7→ {+1,−1}

Diagnosis = fX (new patient)
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Problems of learning
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Linear separation

Most easy case: data set is linearly separable.

We need only a very simple classifier:

S = { x | 〈w, x〉+ b = 0}

Choose w and b from the trainingset X .

W

hyp
erplane: <

w,x>
 + b = 0

Prediction: On which side of the hyperplane does the new point lie?

Decision function: fX (xnew) = sign (〈w, xnew〉+ b)
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Which hyperplane is the best?
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Separate the training set with maximal margin
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Non-separable training sets

Use linear separation, but admit training errors.

Separatin
g

Hyp
erplane

Penalty of error: distance to hyperplane multiplied by error cost C.
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Construction of the maximal margin hyperplane

Maximizing the margin is a problem of constrained optimisation, which can be
solved by Lagrange Method.

Each training point xi is described by a Lagrange multiplier αi:

αi = 0 ⇒ xi has no influence on the hyperplane

αi > 0 ⇒ xi determines the sep. hyperplane
These points are called Support Vectors.
They lie nearest to the hyperplane.
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Solution

Solution: w =
#SV∑
i=1

αiyix
sv
i

Diagnosis: f(xnew) = sign

#SV∑
i=1

αiyi〈xsvi , xnew〉+ b



The decision function only depends on the Support Vectors.

They are the critical elements of the training set.

All other points could be removed without changing the solution.
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What’s next?

I Large Margin Classifiers

II The Kernel Trick

III R package: e1071
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Separation may be easier in higher dimensions

feature
map

separating
hyperplane

complex in low dimensions simple in higher dimensions
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The kernel trick

Classification is easier in high dimensions.

In the construction of the maximal margin hyperplane, we have to evaluate high
dimensional inner products of the form

〈Φ(x1),Φ(x2)〉H

where Φ : L → H is the feature map from a low to a high dimensional space.

Problem: Computationally expensive!

Idea: do the feature map implicitely!
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Kernel Mapping

Mercer Theorem:
Under some conditions on K there exists an inner product 〈 · , · 〉H and a mapping
Φ : L −→ H such that

〈Φ(x1),Φ(x2)〉H = K(x1, x2)

Using this kernel the decision function becomes

f(xnew) = sign

#SV∑
i=1

αiyiK(xi, xnew) + b


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Examples of Kernels

linear K(x1, x2) = 〈x1, x2〉

polynomial K(x1, x2) = (γ〈x1, x2〉+ c0)d

radial basis function K(x1, x2) = exp
(
−γ‖x1 − x2‖2

)
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Parameters of SVM

Kernel Parameters γ: width of rbf
coeff. in polynomial ( = 1)

d: degree of polynomial

c0 additive constant in polynomial (= 0)

Error weight C: influence of training errors
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More than 2 classes: ONE-versus-ALL
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ONE-versus-ONE
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Literature on SVM

• http://www.kernel-machines.org

• Vladimir Vapnik.
Statistical Learning Theory. Wiley, NY, 1998.
The comprehensive treatment of statistical learning theory, including a large amount of ma-
terial on SVMs

The Nature of Statistical Learning Theory. Springer, NY, 1995.
An overview of statistical learning theory, containing no proofs, but most of the crucial
theorems and milestones of learning theory. With a detailed chapter on SVMs for pattern
recognition and regression

• Bernhard Schölkopf and Alex Smola.
Learning with Kernels. MIT Press, Cambridge, MA, 2002.
An introduction and overview over SVMs. A free sample of one third of the chapters (Intro-
duction, Kernels, Loss Functions, Optimization, Learning Theory Part I, and Classification)
is available on the book website.
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What’s next?

I Large Margin Classifiers

II The Kernel Trick

III R package: e1071
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e1071

Misc Functions of the Department of Statistics (e1071), TU Wien

Functions for latent class analysis, short time Fourier transform, fuzzy cluste-
ring, support vector machines, shortest path computation, bagged clustering, ...

Source + Reference Manual:
The Comprehensive R Archive Network:

http://cran.r-project.org/
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e1071: training

svm.model <- svm(x=data, y=labels, type="C-classification",
kernel="linear")

svm.model <- svm(x=data, y=labels, type="C-classification",
kernel="linear", cost="42")

svm.model <- svm(x=data, y=labels, type="C-classification",
kernel="polynomial", degree="2")

svm.model <- svm(x=data, y=labels, type="C-classification",
kernel="radial", gamma="0.002")
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e1071: cross validation

> svm.model <- svm(data, labels, type="C-classification",
kernel="linear", cross=10)

> svm.model

Call:
svm.default(x = data, y = labels, type = "C-classification",

kernel = "linear", cross = 10)

Parameters:
SVM-Type: C-classification

SVM-Kernel: linear
cost: 1

gamma: 0.0001402721

Number of Support Vectors: 42 ( 22 20 )
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e1071: cross validation cont’d

Number of Classes: 2

Levels: (as integer)
1 -1

Rho:
-0.2118043

10-fold cross-validation on training data:

Total Accuracy: 87.7551
Single Accuracies:
75 80 100 80 100 100 80 80 100 80
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e1071: testing

predicted <- predict(svm.model, data) # test on training set

sum(predicted != labels) # count differences

table(true=labels, pred=predicted) # confusion matrix

pred
-1 1

true
-1 24 0
1 0 25
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Thank you!

Florian Markowetz, Classification by SVM, Heidelberg: 2002 Sep 26 26


